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1. Introduction

With the existing evidence for the triviality of the Higgs sector of the electroweak Standard
Model, rendering the removal of the cutoffΛ from the theory impossible, physical quantities in this
sector will, in general, depend on the cutoff. Though this restriction strongly limits the predictive
power of any calculation performed in the Higgs sector, it opens up the possibility of drawing
conclusions on the energy scaleΛ at which new physics has to set in, once, for example, the Higgs
boson mass has been determined experimentally.

The main target of lattice studies of the Higgs-Yukawa sector of the electroweak Standard
Model has therefore been the non-perturbative determination of the cutoff-dependence of the upper
and lower bounds of the Higgs boson mass [1, 2] as well as its decay properties. There are two
main developments which warrant the reconsideration of these questions. First, with the advent of
the LHC, we are to expect that properties of the Standard Model Higgs boson, such as the mass
and the decay width, will be revealed experimentally. Second, there is, in contrast to the situation
of earlier investigations of lattice Higgs-Yukawa models [3, 4, 5, 6], a consistent formulation of
a Higgs-Yukawa model with an exact lattice chiral symmetry [7] based on the Ginsparg-Wilson
relation [8], which allows to emulate the chiral character of the Higgs-fermion coupling structure
of the Standard Model on the lattice while lifting the unwanted fermion doublers at the same time.

Since the question for the lower Higgs boson mass bound as well as the phase structure of the
underlying model has already been addressed in Refs. [9, 10,11, 12], we will here focus only on
the discussion of our results concerning the cutoff-dependent upper Higgs boson mass bound.

2. The SU(2)L×U(1)Y lattice Higgs-Yukawa model

The model we consider here is a four-dimensional lattice Higgs-Yukawa model with a global
SU(2)L ×U(1)Y symmetry [7], aiming at the implementation of the chiral Higgs-fermion coupling
structure of the pure Higgs-Yukawa sector of the Standard Model reading

LY = yb
(

t̄, b̄
)

L ϕbR+yt
(

t̄, b̄
)

L ϕ̃tR+c.c, (2.1)

with yt,b denoting the top and bottom Yukawa coupling constants. Herewe have restricted ourselves
to the consideration of the top-bottom doublet(t,b) interacting with the complex scalar doubletϕ
(ϕ̃ = iτ2ϕ∗, τi : Pauli-matrices), since the dynamics ofϕ , containing the Higgs mode, is dominated
by the coupling to the heaviest fermions. For the same reasonwe also neglect any gauge fields in
this approach.

The fields considered in this model are thus the aforementioned doubletϕ as well asNf top-
bottom doublets represented by eight-component spinorsψ̄(i) ≡ (t̄(i), b̄(i)), i = 1, ...,Nf . The chiral
character of the targeted coupling structure (2.1) can thenbe preserved on the lattice by constructing
the fermionic actionSF on the basis of the Neuberger overlap operator [13] according to

SF =
Nf

∑
i=1

ψ̄(i)
M ψ(i), M = D

(ov) +P+φ† diag(yt ,yb) P̂+ +P− diag(yt ,yb)φ P̂−, (2.2)

where the scalar fieldϕx has been rewritten as a quaternionic, 2×2 matrix φ†
x = (ϕ̃x,ϕx), with x

denoting the site index of theL3
s × Lt-lattice. The left- and right-handed projection operatorsP±
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and the modified projectorŝP± are given as

P± =
1± γ5

2
, P̂± = 1±γ̂5

2 , γ̂5 = γ5

(1− 1
ρ

D
(ov)

)

, (2.3)

with ρ being the radius of the circle of eigenvalues in the complex plane of the free Neuberger
overlap operator [13].

This action now obeys an exact global SU(2)L ×U(1)Y lattice chiral symmetry. ForΩL ∈
SU(2) andε ∈ IR the action is invariant under the transformation

ψ →UYP̂+ψ +UYΩLP̂−ψ , ψ̄ → ψ̄P+Ω†
LU

†
Y + ψ̄P−U†

Y, (2.4)

φ →UYφΩ†
L, φ† → ΩLφ†U†

Y (2.5)

with the compact notationUY ≡ exp(iεY) denoting the respective representations of the global
hypercharge symmetry groupU(1)Y for the respective field it is acting on. In the continuum limit
Eq. (2.4-2.5) eventually recover the (here global) continuum SU(2)L ×U(1)Y chiral symmetry.

Finally, the purely bosonic partSϕ of the total lattice actionS= SF +Sϕ is given by the usual
latticeΦ4-action

Sϕ = ∑
x

{

1
2

∇ f
µϕ†

x ∇ f
µϕx +

1
2

m2
0ϕ†

x ϕx + λ
(

ϕ†
x ϕx

)2
}

, (2.6)

with the bare massm0, the forward derivative operator∇ f
µ in direction µ , and the bare quartic

coupling constantλ .

3. Upper Higgs boson mass bounds

In the following the aim will be to determine the largest Higgs boson mass attainable in the
considered Higgs-Yukawa model for a given cutoffΛ, while being in consistency with phenomenol-
ogy. Here, the later requirement is translated into three matching conditions fixing the vacuum
expectation valuev of the scalar fieldϕ as well as the top and bottom quark masses, according to

246GeV=
vr

a
≡ v√

ZG ·a, Λ = a−1, yt,b =
mt,b

vr
, (3.1)

where we restrict ourselves to the mass degenerate case withmt/a = mb/a = 175GeV in order
to guarantee the fermion determinant det(M ) to be real. As a starting point, we simply use the
tree-level relations in Eq. (3.1) to fix the bare Yukawa coupling constants. The actually resulting
fermion masses have explicitly been computed on the lattice, which would eventually allow for
a more precise tuning of the Yukawa coupling constants beyond the tree-level relation in some
follow-up studies. However, though not explicitly demonstrated in this paper, it is found that the
Yukawa coupling constants determined by Eq. (3.1) already reproduce the targeted fermion masses
with a deviation smaller than 2% in the here considered parameter setups. The cutoff parameter
Λ can then (non-uniquely) be defined as the inverse lattice spacing a−1, which is obtained by
matching the lattice result on the renormalized vacuum expectation valuevr = v/

√
ZG with its

phenomenological value. The underlying Goldstone renormalization constantZG is given as

Z−1
G =

d
dp2

c

[

G̃c
G(p2

c)
]−1

∣

∣

∣

p2
c=−m2

G

, G̃G(p) = 1
3

3
∑

α=1
〈g̃α

p g̃α
−p〉, G̃H(p) = 〈h̃ph̃−p〉, (3.2)
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with G̃H,G(p) denoting the lattice propagators of the Higgs and Goldstonemodes in momentum
space, respectively. For the details of how the aforementioned modes̃hp, g̃α

p , and the vacuum
expectation valuev are extracted from the scalar fieldϕ , the interested reader is referred to Ref. [9].
The Goldstone massmGp is then given by the pole of the Goldstone propagator, according to

[

G̃c
G(p2

c)
]−1

∣

∣

∣

p2
c=−m2

Gp

= 0, Re
(

[

G̃c
H(p2

c)
]−1

)∣

∣

∣

p2
c=−m2

H p

= 0. (3.3)

Following the proposition in Ref. [14] the Higgs boson mass,on the other hand, is obtained here as
the zero of the real part of the inverse Higgs propagator, being very close to the actual pole of the
propagator [14] while being numerically much better accessible.
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Figure 1: The Higgs boson massmH p and the renormalized quartic coupling constantλr are shown versus
the bare coupling constantλ in panels (a) and (b), respectively. These results have beenobtained in direct
Monte-Carlo calculations on a 163 × 32-lattice withNf = 1. The cutoff parameterΛ was intended to be
kept constant, while the actually obtained values ofΛ fluctuate here between 1504GeV and 1549GeV. The
horizontal lines depict the corresponding results atλ = ∞, and the highlighted bands mark the associated
statistical uncertainties.

For clarification it is remarked that̃Gc
H,G(pc) denote analytical continuations of the lattice

propagatorsG̃H,G(p), since the latter are only defined at the discrete set of lattice momentap. These
analytical continuations have been obtained here by fittingthe lattice propagators with fit functions
derived from renormalized perturbation theory. As discussed in Ref. [14] the renormalized quartic
coupling constantλr can then be defined as

λr =
m2

Hp−m2
Gp

8v2
r

. (3.4)

From perturbation theory one would expect the largest Higgsboson mass to be observed at
infinite bare quartic coupling constant,i.e. λ = ∞. In Fig. 1 it is explicitly checked that the
renormalized quartic coupling constantλr as well as the Higgs boson massmHp itself are indeed
monotonic functions of the bare parameterλ , converging to their respective maximum atλ = ∞,
as expected. For the purpose of determining the upper Higgs boson mass bound, the settingλ = ∞
is therefore adapted in the following.
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For the eventual determination of the cutoff-dependent Higgs boson mass boundmup
H (Λ) sev-

eral series of Monte-Carlo calculations have been performed at different values ofΛ and on dif-
ferent lattice volumes to finally allow for an infinite volumeextrapolation. In order to tame finite
volume effects as well as cutoff effects, we demand here as a minimal requirement that all particle
masses ˆm= mHp,mt ,mb in lattice units fulfill

m̂< 0.5 and m̂·Ls,t > 2, (3.5)

at least on the largest investigated lattice volumes. Assuming the Higgs boson mass to be below
700GeV this allows to reach energy scales between 1400GeV and 2800GeV on a 324-lattice.

In the following we useNf = 1, Lt = 32, andLs = 12,16,20,24,32 while the bare mass
parameterm0 is tuned to cover the aforementioned interval of accessibleenergy scales. In addition,
corresponding lattice calculations have also been performed in the pureΦ4-theory, i.e. with yt =

yb = 0, in order to estimate the strength of the fermionic contributions to the upper mass bound
mup

H (Λ). The obtained finite volume lattice data are presented in Fig. 2.
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Figure 2: The Higgs propagator massmH p is presented in units of the vacuum expectation valuev versus
1/v. Those Monte-Carlo results with identical parameter sets differing only in the underlying lattice volume
are connected via dotted lines to illustrate the effects of the finite volume. The dashed curves depict the
fits of the lattice results according to the finite size fit approach in Eq. (3.9) as explained in the main text.
Panel (a) refers to the full Higgs-Yukawa model, while panel(b) shows the corresponding results of the pure
Φ4-theory.

In order to understand the strong finite volume effects observed in Fig. 2a we consider here the
constraint effective potentialU [v̆]. In Ref. [10] it has been derived for the degenerate caseyt = yb

in the largeNf -limit with λ ∝ N−1
f andyt,b ∝ N−1/2

f . It then reads

U [v̆] =
1
2

m2
0v̆2 + λ v̆4 +UF [v̆], UF [v̆] =

−4Nf

L3
s ·Lt

·∑
p

log

∣

∣

∣

∣

ν+(p)+yt v̆

(

1− 1
2ρ

ν+(p)

)
∣

∣

∣

∣

2

, (3.6)

whereUF [v̆] denotes here the fermionic contribution andν+(p) is the eigenvalue of the free overlap
Dirac operator with non-negative imaginary part associated to the lattice momentump.
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Figure 3: The cutoff dependence of the upper Higgs boson mass bound is presented in panel (a) as obtained
from the infinite volume extrapolation results of the data inFig. 2. The dashed and solid curves are fits of the
data arising from the full Higgs-Yukawa model and the pureΦ4-theory, respectively, with the analytically
expected cutoff dependence in Eq. (3.10). Panel (b) shows the latter fit curves extrapolated to larger values
of the cutoffΛ. In both panels the highlighted bands reflect the uncertainty of the respective fit curves.

An estimatemHe of the Higgs boson mass can then be obtained from the curvature of the
effective potential at its minimum, given by the vacuum expectation valuev, yielding then

m2
He = 8λv2− 1

v
d
dv̆

UF [v̆]
∣

∣

∣

v̆=v
+

d2

dv̆2UF [v̆]
∣

∣

∣

v̆=v
, (3.7)

which predicts the numerical results onmHp well in the weak coupling regime [9],i.e. for λ ≪ 1.
In this case, however, we consider the settingλ = ∞, rendering thus Eq. (3.7) inapplicable here.
Replacing the bare parameterλ with its renormalized counterpartλr , which is well justified at the
considered order inλ , and exploiting also the expected functional form of the cutoff-dependence
of λr , which has been derived in Ref. [14] according to

λr = Aλ ·
[

log(Λ2/µ2)+Bλ
]−1

, (3.8)

where double-logarithmic terms have been neglected,µ denotes some unspecified scale, andAλ ≡
Aλ (µ), Bλ ≡ Bλ (µ) are constants, one directly arrives at the expression

m2
He =

8v2Aλ
log(v−2)+Bλ

− 1
v

d
dv̆

UF [v̆]

∣

∣

∣

∣

∣

v̆=v

+
d2

dv̆2UF [v̆]

∣

∣

∣

∣

∣

v̆=v

, (3.9)

which has been used to fit the finite volume lattice data in Fig.2 with the free fit parametersAλ ,
Bλ . From the good agreement between the analytical fit curves and the numerical data one learns
that the finite size effects are well understandable alreadywith the simple ansatz given in Eq. (3.9).
In particular, the finite size effects in Fig. 2a, which are much stronger than in Fig. 2b, can mainly
be ascribed to the fermionic contributions. This is also what one would have expected, since the
top quark is the lightest particle in the here considered scenario.
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After having performed an infinite volume extrapolation of the finite size lattice data, the
obtained results of that extrapolation are finally presented in Fig. 3a. These numerical data are
moreover fitted with the analytically expected functional form of the cutoff-dependence of the
Higgs boson mass, derived in Ref. [14] according to

mHp

a
= Am ·

[

log(Λ2/µ2)+Bm
]−1/2

, (3.10)

with Am ≡ Am(µ), Bm ≡ Bm(µ) denoting the free fit parameters andµ being again some unspec-
ified scale here. One learns from this presentation that the expected logarithmic decline of the
Higgs boson mass with increasing cutoff parameterΛ can very well be resolved. The fermionic
contribution to the upper Higgs boson mass bound, however, can not clearly be identified with the
here available statistics. Finally, it is tempting to extend the fit curves to very large values ofΛ.
This has been done in Fig. 3b. One finds that the resulting cutoff-dependent upper Higgs boson
mass bound would reach a value around 160GeV at the Planck scale, which is in consistency with
earlier perturbative studies within the given uncertainties.
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