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1. Introduction

Besides tremendous research having been done since Kolmogorov’s famous publication in
1941 [1], hydrodynamic turbulence essentially remains an unsolved problem of modern physics.
This is especially remarkable as the fundamentals seem to befairly easy – the Navier-Stokes equa-
tions for the velocity fielduα and pressurep

∂tuα +uβ ∂β uα −ν∇2uα +
1
ρ

∂α p = 0 (1.1)

with the additional constraint

∂αuα = 0 (1.2)

simply express the conservation of momentum in a classical,incompressible fluid of viscosityν
and densityρ . For laminar flows it is well known that the Navier-Stokes equations reproduce
realistic flows very accurately; in the turbulent regime, itis still an open question how the universal
characteristics of turbulent flow, characterized by the scaling exponentsξp of structure functions
Sp of orderp, defined by

Sp(x) := |u(r +x)−u(r)|p ∼ |x|ξp, (1.3)

can be extracted from first principles. Here the bar corresponds to a spatial averaging.

Monte Carlo simulations in the path integral formulation enable us to gain direct insight into
the formation of localized structures and their behavior, and to measure observables as, e.g. struc-
ture functions and their scaling exponents [2 – 4].

2. Burgers’ Equation

We decided to elaborate the methods using the stochastically forced Burgers equation [5] in
1+1 dimensions

∂tu+u∂xu−ν∂ 2
x u = f , (2.1)

which may be interpreted as the flow equation for a fully compressible fluid. The stochastic force
is modeled to be Gaussian with correlation

χ(x, t;x′, t ′) :=
〈

f (x, t) f (x′, t ′)
〉

= ε δ (t − t ′)exp

(

−
|x−x′|

Λ

)

, (2.2)

whereΛ defines the correlation length of the forcing and the〈 · · · 〉 denotes the ensemble average.
A finite viscosityν and energy dissipationε provide a dissipation length scaleλ corresponding to
the Kolmogorov-scale in Navier-Stokes turbulence:

λ :=

(

ν3

ε

)

1
4

. (2.3)

We can furthermore identify the Reynolds-number as

Re:= (εΛ4/ν3)1/3. (2.4)
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The fundamental solutions to the Burgers equation are well-known – in the limit of vanishing
viscosity (Hopf-equation) these form singular shocks. A finite dissipation scaleλ ∼ ν/U , where
U is the characteristic velocity, provides an UV-regularization of the shock structures:

u = −U tanh
U
2ν

x. (2.5)

Most interestingly, the exponentsξp as defined in (1.3) are non-trivial for Burgers turbulence; for
the forcing (2.2) and in the regimex∼ λ we have the analytic result [6]

ξp = min(1, p). (2.6)

3. Path Integral Formulation

Following the method of Martin, Siggia and Rose [7], we established a path integral for Burg-
ers’ equation

Z ∝
∫

Du exp

(

−
1
2

∫

dtdx
(

∂tu+u∂xu−ν∂ 2
x u

)

χ−1∗
(

∂tu+u∂xu−ν∂ 2
x u

)

)

, (3.1)

where∗ denotes the convolution.
It has been shown by Falkovich et al. [8, 9] on the basis of an equivalent sum of states that the

fundamental solutions of Burgulence can be understood as instantons.

4. Monte Carlo Simulations

For 1+1 dimensional Burgulence, a large number of stable simulations could be performed;
we are working on the final analysis. Typical lattice sizes range from(Nx = 16)× (Nt = 16) up to
(Nx = 4096)× (Nt = 128) lattice points.

4.1 Boundary Conditions

To be in general agreement with literature and analytic calculations, we started with lattices
periodic both in time and space direction. In an attempt to reduce autocorrelation times, we dropped
these boundary conditions. While autocorrelation times did not change much, simulating with
free boundaries effectively doubles the spatial lattice extent and gives access to excitations of the
Burgers vacuum state.

4.2 Lattice Discretization

Once having discretized the path integral on a Euclidean lattice of spacings∆x and∆t, we get
for ν :

ν = α
(∆x)2

∆t
. (4.1)

The continuum limit of our lattice theory is reached by holding ν andReconstant while increasing
the number of lattice sites.α is an a priori arbitrary constant that can be interpreted as ameasure
for ∆t depending on∆x and also has to be kept fixed while performing the continuum limit.
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Shock Structure in Burgers’ Configuration

Figure 1: Time-slice of a(Nx = 256)× (Nt = 45)-lattice at Re= 4, ν = 1/32, showing the velocity
u(x,t = const) as a function ofx. The typical shock structure is clearly visible.

4.3 Algorithms

We use a local heat bath algorithm with successive over-relaxation (SOR) for the Monte Carlo
evaluation of the partition function [11]. The use of certain acceleration techniques with SOR,
specifically Chebyshev acceleration [12], significantly accelerates the thermalization process.

Though suiting our purposes so far, it poses certain restrictions on parallelization. We therefore
started employing a Hybrid Monte Carlo algorithm that we expect to scale better with the number
of parallel processors.

4.4 Autocorrelation Times

With χ being a nonlocal operator one would expect long autocorrelation times in the sim-
ulation of stochastically forced differential equations.However, with the over-relaxed heat bath
algorithm and an appropriate definition of structure functions on the lattice (where the reference
point for evaluation is chosen randomly for each configuration) the integrated autocorrelation time
is reduced toτ ∼ O(1).

4.5 Resources

For testing purposes small lattices may easily be simulatedon desktop PCs. However, high
resolution simulations on large lattices require massively parallel architectures. We have run our
simulations on the IBM p690 cluster JUMP at FZ Jülich and on the Linux cluster at Humboldt
University Berlin with up to 256 processors in parallel. In July 2009 we continued our simulations
on the new supercomputer JUROPA at FZ Jülich.
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Figure 2: Third order structure functionS3(x) as a function of space separationx.

5. First Results

First results include further constraints that have to be imposed in order to ensure stable nu-
merics. Most constricting is the need to resolve the Kolmogorov-length scaleλ on the lattice. We
can in this way show the effect ofλ as UV-regularization of the otherwise singular shocks. This
translates into a relation for the Reynolds-number:

Re<
Λ
∆x

. (5.1)

This will become crucial for Navier-Stokes turbulence enforcing us to simulate big lattices.

5.1 Structure Functions

From analytic calculations [6] we have

Sp(x) ∼Cp|x|
p +C′

p|x|, (5.2)

for small seperations in the inertial range.
Though our results are in general agreement with this, the extraction of scaling exponents is

far from trivial and very sensitive to statistical errors.

5.2 Extended Self-Similarity (ESS)

Rather than measuring the scaling exponentsξp directly, there have been attempts to measure
the scaling behavior of ratios of structure functions [10].It was shown that this greatly enhances
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Extended Self-Similarity in Burgers’ Turbulence

Figure 3: log[S3(x)] as function of log[S1(x)] clearly showing the linear ESS-dependence.

the inertial range not only at high but also moderate Reynolds numbers. However, we must stress
that up to now it is not clear if there are any systematic effects in the evaluation of the structure
function exponents via ESS.

5.3 Outlook

After completing the analysis of 1+1 dimensional Burgulence, we will proceed to 3+1 dimen-
sions. The ultimate challenge will be the simulation and analysis of 2+1 and 3+1 dimensional
Navier-Stokes turbulence.
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