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The Fermi gas at unitarity is a particularly interesting system of cold atoms, being dilute and

strongly interacting at the same time. It can be studied non-perturbatively with Monte Carlo

methods, like the recently developed worm algorithm. We discuss our implementation and tests

of this algorithm and suggest a modification that increases its efficiency by reducing autocorrela-

tions. We then show how the worm algorithm can be applied to calculate the critical temperature

of an imbalanced Fermi gas (unequal number of fermions in the two spin components). We fi-

nally present some results obtained with the modified algorithm, in the balanced as well as in the

imbalanced case.
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1. Introduction

Lattice methods are useful for studying strongly interacting theories in particle as well as in
condensed matter physics. When strong interactions render a perturbative study impossible, lattice
field theory can provide a useful tool for numerical calculations. The Fermi gas at unitarity is a
prominent example for such a strongly interacting system [1].

Fermionic matter is ubiquitous in nature, from the electrons in metals and semiconductors or
the neutrons in the inner crust of neutron stars, to gases of fermionic atoms, like40K or 6Li that
can be created and studied under laboratory conditions. Due to Fermi-Dirac statistics, a dilute
system of spin-polarised fermions exhibits no interactions and can be viewed as an ideal Fermi gas.
However, interactions become crucial when we are dealing with fermions of several spin species.
Low-energy interactions are characterised by the scattering lengtha. An especially intriguing case
is the Fermi gas at divergent scattering length – the unitary regime, in which the gas is dilute (range
of potential� interparticle distance) and strongly interacting (interparticle distance� scattering
length) at the same time. One key feature of this regime is universality: since all information
about interactions is contained in the scattering length, and this length scale is no longer present at
unitarity, the gas exhibits universal behaviour that only depends on two dimensionful parameters,
temperature and density.

Due to a lack of an exact theoretical description several approximate and numerical approaches
have been tried to study the Fermi gas in the unitarity limit. An accurate result for the critical tem-
perature has been obtained with the recently developed Diagrammatic Determinant Monte Carlo
(DDMC) algorithm [2]. In the following we will first introduce the model and the algorithm and
then present our modifications and results.

2. Fermi-Hubbard model at finite temperature

The Fermi-Hubbard model is the simplest lattice model for two-particle scattering. Its Hamil-
tonian in the grand canonical ensemble is given by

H = H0 +H1 = ∑
k,σ

(εk −µσ )c†
kσ

ckσ +U ∑
x

c†
x↑cx↑c

†
x↓cx↓, (2.1)

whereεk = 1
m ∑3

j=1(1−cosk j) is the discrete dispersion relation, andc†
kσ

(ckσ ) the time-dependent
fermionic creation (annihilation) operator. The model assumes non-relativistic fermions of two
species labelled byσ (which we will call "spin up" and "spin down") with equal particle massm.
For the present we also assume equal chemical potentialµ↑ = µ↓ ≡ µ for the two spin species.
The attractive contact interaction is characterised by the coupling constantU < 0. The limit of
infinite scattering length corresponds toU = −7.914, in units wherem= 1/2. We work on a 3D
simple cubic spatial lattice withL3 sites, periodic boundary conditions and lattice spacing set to
unity. The time direction remains continuous. The continuum limit of this model can be taken by
extrapolation to vanishing filling factor.

To study the finite temperature behaviour consider the grand canonical partition function in
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Z = 1 + + +− − ± . . .

Figure 1: Diagrammatic expansion of the partition function

the imaginary time interaction picture,

Z = Tre−βH = Tre−βH0Tτ exp

(
−

∫
β

0
dτH1(τ)

)
, (2.2)

whereβ is the inverse temperature,Tτ the imaginary time ordering operator andH1(τ)= eτH0H1e−τH0.
ExpandingZ in powers ofH1,

Z =
∞

∑
p=0

(−U)p ∑
x1,...xp

∫
0<τ1<...β

p

∏
j=1

dτ jTr

[
e−βH0

p

∏
j=1

c†
↑(x j ,τ j)c↑(x j ,τ j)c†

↓(x j ,τ j)c↓(x j ,τ j)

]
, (2.3)

generates a series of Feynman diagrams, as shown in figure1. Since we are ultimately interested
in thermal expectation values of operators and thermal averages are calculated using the expansion
of the partition function, it would be convenient to use this expansion as a probability distribution
to generate configurations for Monte Carlo sampling. However, each fermionic loop contributes a
minus sign, with the consequence that the diagrams in the series have different signs. For our pur-
pose we need to rewrite the series as a sum of positive terms only. This can be done by considering
all diagrams of orderp as one entity, which can be represented as the product of two matrix de-
terminants (onep× p matrix for each spin component). The partition function can then be written
as

Z = ∑
Sp

(−U)pdetA↑(Sp)detA↓(Sp) (2.4)

whereSp denotes a vertex configuration (the spacetime positions of all vertices) and the matrix
entries are free finite-temperature single-particle propagatorsAσ

i j (Sp) = Gσ

(0)(xi − x j ,τi − τ j). If
the chemical potential is equal for spin up and spin down fermions (the balanced case) we have
detA↑detA↓ = |detA|2, so that all terms in the series are positive [3].

The physical observable in the focus of our study is the order parameter for the phase transition
to superfluidity. We introduce the pair creation and annihilation operatorsP(x,τ) = cx↑(τ)cx↓(τ)
andP†(x′,τ ′) = c†

x′↑(τ
′)c†

x′↓(τ
′). At the critical point the correlation function

G2(xτ;x′τ ′) =
〈
TτP(x,τ)P†(x′,τ ′)

〉
=

1
Z

Tr[TτP(x,τ)P†(x′,τ ′)e−βH ] (2.5)

is proportional to|x−x′|−(1+η) as|x−x′| → ∞, whereη ≈ 0.038 is the anomalous dimension for
the U(1) universality class. The integrated correlation function

R(L,T)≡ L1+η(βL3)−2 ∑
x,x′

∫
β

0
dτ

∫
β

0
dτ

′G2(xτ;x′τ ′) (2.6)
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will be independent of the lattice sizeL at βc = 1/Tc. This property can be used to determine the
critical temperature.

3. Worm algorithm

The configuration space is sampled via a Monte Carlo Markov chain process: in each step
one of the possible updates to another vertex configuration is proposed, and accepted with some
probability given by the detailed balance equations. The requirements of detailed balance and er-
godicity ensure that the produced configurations are indeed distributed according to the correct
thermal probability distributionρ(Sp) = 1

Z(−U)p|detA(Sp)|2, given by the expansion of the parti-
tion function.

The diagrammatic expansion of Tr[TτP(x,τ)P†(x′,τ ′)e−βH ] is similar to that ofZ, but contains
an additional pair of 2-point vertices at(x,τ) and(x′,τ ′). It is thus of advantage to sample these
two series in the same simulation. In addition to sampling the regular 4-point diagrams we allow
updates that insert the pair of 2-point vertices ("worm vertices") into the configuration space. This
setup has several advantages. Firstly, the Monte Carlo estimator for the order parameter becomes
very simple: it is the ratio of configurations with and without worm vertices. Secondly, all updates
can now be performed through the worm verticesP andP†, which simplifies the setup.

A detailed description of the individual updates can be found in the appendix of [2]. Here we
will only give a brief summary.

• Updates only concerning the worm vertices:

– Worm creation/annihilation: insert/remove the pairP(x,τ), P†(x′,τ ′) into/from the
configuration.

– Worm shift: shift theP†(x′,τ ′) vertex to other coordinates.

• Updates of the regular 4-point vertices: adding/removing a 4-point vertex (changes the dia-
gram order).

– Diagonal version: add or remove a random vertex.

– Alternative using worm: move theP(x,τ) vertex to another position and insert a 4-point
vertex at its old position. The new coordinates are chosen in a way that tends to prolong
existing vertex chains. In this case an update can only happen when the pair of 2-point
vertices is present.

The worm setup, as proposed in [2], leads to much higher acceptance rates than the regular
"diagonal setup". The idea behind the worm setup is that at low densities the major contribution
comes from multi-ladder diagrams, these are configurations where the vertices are arranged into
several vertex chains. The typical size of a chain depends on the parameters of the system. To
favour the creation of vertex chains the worm update uses the 2-point vertexP to add (or remove)
4-point vertices in a small spacetime region, whileP gets shifted to new coordinates each time.
At low densities the new coordinates ofP will be chosen according to a probability distribution
that favours zero or small spatial shifts and small temporal shifts in the direction of positiveτ.
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The removal update always attempts to remove the nearest neighbour ofP, which means that due
to detailed balance the addition update can only be accepted if the added vertex is the nearest
neighbour of the shiftedP-vertex. This nearest neighbour condition is crucial for achieving high
acceptance rates.

4. Modifications of the algorithm

In our study we found that although the worm type addition and removal updates have high
acceptance rates, it is at the cost of strong autocorrelations. It is most efficient for the algorithm
to successively add and remove the same vertices, so that the configuration does not change sig-
nificantly, even after many successful updates. To illustrate this compare the measurements of the
interaction energy (which is proportional to the diagram order) in the diagonal and the worm setup
(figures2 and3). Both simulations used the same parameters and a comparable number of MC
steps.

Because of the large measurement error due to autocorrelations the worm setup is effectively
less efficient than the standard diagonal setup. These new insights make a modification of the
worm algorithm necessary. The goal is hereby to combine the advantages of the diagonal setup
(weak autocorrelations) with the ones of the worm setup (high acceptance rates). To achieve this
we propose a second type of addition/removal updates:

• Choose a random 4-point vertex from the configuration (which will act as a worm for this
step).

• Addition: add another 4-point vertex on the same lattice site and in some time interval around
the worm.

• Removal: remove the nearest neighbour of the worm vertex (implies that addition can only
be accepted if the new vertex is the nearest neighbour of the worm).

This setup still prolongs existing vertex chains, but autocorrelations are significantly reduced since
the worm changes with every update. This new type of updates can of course only be employed
in addition to the regular diagonal addition and removal updates. It works regardless if the pair
of 2-point vertices is present or not in the configuration (the worm addition/removal updates can
only take place when the 2-point vertices are present). The acceptance rates for this update are
comparable with those for the regular worm updates.

5. Imbalanced Fermi gas

The DDMC algorithm presented in the previous sections relies strongly on the assumption of
equal densities of the two fermion species. This assumption allows us to write the partition function
(2.4) as a sum of positive terms only, and consequently to use it as a probability distribution for
Monte Carlo sampling. We now present a generalisation of the algorithm to the imbalanced unitary
Fermi gas (µ↑ 6= µ↓). The imbalanced case is especially interesting for a variety of reasons. A
much richer structure of the phase diagram can be observed in this case. The superfluid state
has been found to be remarkably stable, however it is also known that at some critical imbalance

5



P
o
S
(
L
A
T
2
0
0
9
)
0
6
2

Monte Carlo study of a Fermi gas with infinite scattering length O. Goulko

 40

 60

 80

 100

 120

 140

 160

 0  20000  40000  60000  80000  100000

(a) Diagonal setup
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(b) Worm setup

Figure 2: The first 100000 measurements of the interaction energy (a measurement takes place every 100
MC steps). Strong autocorrelations are visible in the worm setup.
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(b) Worm setup

Figure 3: The blocking error analysis of the interaction energy (lines to guide the eye). The blocked error is
much higher in the worm setup and continues increasing even for large block sizes.

superfluidity must break down completely [4]. Several experimental studies are already available
[5], but to our knowledge numerical studies have so far been only performed at zero temperature
[6].

Our goal is to study how an imbalance will affect the critical temperature of the system. In this
case a sign problem is present: the functionρ(Sp) = 1

Z(−U)pdetA↑(Sp)detA↓(Sp) is no longer
positive for all configurationsSp and can thus not be used as a probability distribution. Several
methods of dealing with sign problems of this kind are known from lattice QCD, where the intro-
duction of a chemical potential renders the fermionic determinant complex. The most straightfor-
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ward one is the "phase quenched method", which reduces to a "sign quenched method" in our case.
We can writeρ(Sp) = |ρ(Sp)|sign(Sp) and use the positive function|ρ(Sp)| as the new probability
distribution. For a thermal average this means

〈X〉ρ =
∑X(Sp)ρ(Sp)

∑ρ(Sp)
=

∑X(Sp)|ρ(Sp)|sign(Sp)
∑ |ρ(Sp)|sign(Sp)

=
〈Xsign〉|ρ|
〈sign〉|ρ|

(5.1)

This representation of a thermal average in terms of the new probability distribution|ρ(Sp)| is
mathematically equivalent to the usual thermal average. However, numerical errors can become
very large if〈sign〉|ρ| ≈ 0, as it happens for the expectation value of the phase in QCD. Our studies
have shown that for the unitary Fermi gas the sign remains very close to unity for a wide range of
imbalances, so that sign quenching is applicable and accurate values for the critical temperature
can be obtained. Some preliminary data for the balanced and imbalanced case will be presented in
the next section.

6. Results

With the modified worm algorithm we were able to reproduce several values ofTc at different
filling factorsν for the balanced case. Figure4 shows a typical order parameter analysis. Since the
integrated correlation functionR(L,T) defined in equation (2.6) becomes lattice size independent
at the critical point, theR(L,T) curves for differentL are expected to cross atβc = 1/Tc. Due to
finite size effects the curves do not cross in exactly one point, but renormalisation group analysis
can be applied to extrapolate to the infinite volume limit [2]. For the point in4(a) we obtain
ν1/3 = 0.542± 0.003 andTc = (0.087± 0.002)EF , whereEF is the Fermi energy. This agrees
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Figure 4: The integrated correlation functionR(L,T) is plotted versus the inverse temperatureβ = 1/T for
different lattice sizes. The lines cross near the critical point, where the order parameter becomes lattice size
independent.
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well with the results presented in [2]. In figure4(b)we present the crossing of the order parameter
lines for the unitary Fermi gas with an imbalance of|∆µ|= (0.0398±0.0007)EF . In this case the
expectation value of the sign was found to be between 0.98 and approximately 1 for lattice sizes
L = 12,8,6. We can see that the overall errors are sufficiently small. For the point in4(b)we obtain
ν1/3 = 0.512±0.005 andTc = (0.084±0.005)EF .

Our studies so far indicate that the sign quenched method can be successfully applied to imbal-
ances of up to about 0.3EF . For very large imbalances the sign average becomes close to zero, so
that reliable results can no longer be obtained. Further measurements for a wider range of densities
and imbalances are in progress.
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