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1. Introduction

The understanding of the realization of symmetries in QCD from first principles has been
an important issue for a long time. During the 80’s, Vafa and Witten gave arguments against
spontaneous breaking of parity [1] and vector-like global symmetries [2]in vector-like theories;
however, these arguments were not as useful as expected. Some years after the publication of
[1], many articles appeared [3] calling into question the validity of the paper (see for a recent
review [4]). The fact that the issue is still open twenty years after the publication of the first
paper is an indicative of the complexity of the subject. Regarding the secondpaper [2], it must
be remarked that the result is not applicable neither to the Ginsparg-Wilson regularization1 nor to
one of the most used fermionic regularizations on the lattice for QCD, i.e., Wilsonfermions. In
that case, and as it was shown by Aoki [5, 6], there exists a region of the parameters where parity
and flavour symmetries are spontaneously broken, for the conditions of the Vafa-Witten theorem
are not fulfilled in the Wilson regularization. In the end, a theoretical proofof the realization of
symmetries of QCD is still lacking.

This is where the p.d.f. formalism can help. The p.d.f. formalism is a powerfultool to analyze
the symmetries of a theory, widely used in statistical mechanics, and introducedaround ten years
ago in quantum field theories for Grassmann degrees of freedom with success [7]. In this paper, we
apply the p.d.f. formalism to different regularizations of lattice QCD. The next section is devoted
to a brief introduction to the p.d.f. formalism. In the second section, we analyzethe Aoki phase, to
find either the existence of a new phase, or a infinite set of sum-rules, the eigenvalues of the Wilson-
Dirac operator must comply with. The third section applies the same formalism to another system;
we successfully find, by means of the p.d.f., rigorous proof of parity andvector-like symmetries
conservation in the Ginsparg-Wilson regularization of lattice QCD at non-zero mass. The last
section summarizes our conclusions

2. The p.d.f. formalism

The usual way to study spontaneous symmetry breaking on the lattice consistsin the following
procedure: An external source, which breaks the analyzed symmetry explicitly, is added. This
generates a non-zero expectation value of the order parameter for thatsymmetry. Then we take,
in this order, first the thermodynamic limit, and finally, the zero external source limit. If the order
parameter expectation value is non-zero after these two limits, then the symmetry isspontaneously
broken. Although very popular, the method requires extrapolations to be made. Moreover, in some
systems, the external source method can not be applied in lattice simulations, for the symmetry
breaking term may add a potentially problematic sign problem. This is the case of the diquark
condensate in two colours QCD [8]. It would be desirable to be able to studythe fate of the
symmetries without having to add an external source.

The p.d.f. formalism enables us to do so. It simply amounts to compute the followingquantity

1The paper [2] states that vector symmetries are conserved in vector-like theories, if one is able to find an upper
bound for the propagator. The paper [2] fails to prove this bound for the Ginsparg-Wilson regularization, as hermiticity
of the Dirac operator is used during the proof.
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P(c) = lim
V→∞

〈

δ
(

1
V ∑

x
O(x)− c

)〉

, (2.1)

with O(x) the order parameter to be studied. In our case, this is a fermionic bilinearψ̄(x)Oψ(x),
whereO is a constant matrix. To obtain some computable quantity, we prefer to work with the
Fourier transform of (2.1)

P(q) =
∫

dceiqcP(c) = lim
V→∞

1
Z

∫

[dU ]dψ dψ̄ e−SGeψ̄(∆+O iq
V )ψ =

lim
V→∞

1
Z

∫

[dU ]dψ dψ̄ det

(

∆+O
iq
V

)

= lim
V→∞

〈

det(∆+O iq
V )

det∆

〉

, (2.2)

where∆ is the Dirac operator, andSG is the pure gauge action. The expectation values of the
fermionic bilinear can be computed from (2) easily, taking derivatives ofP(q) at q = 0,

dnP(q)

dqn

∣

∣

∣

∣

q=0
=
∫

dc(ic)neiqcP(c)

∣

∣

∣

∣

q=0
= in 〈cn〉 . (2.3)

Thus, the moments of the Fourier transform of the distribution function are theexpectation values of
the powers of the observables. For a broken symmetry, the expectation value of the order parameter
〈c〉 will be zero, for a broken symmetry gives rise to symmetric vacua, and the expectation values
of the order parameter in those vacua cancel each other. Then, the interesting observables to find
broken symmetries are〈cn〉 with n even.

3. The Wilson scenario

Let’s apply this machinery to QCD with two degenerated flavours of Wilson fermions [9].
In this scenario, there exists a phase -the Aoki phase- where parity andflavour are spontaneously
broken, and this translates into a non-zero value of the fermionic bilineariψ̄γ5τ3ψ . Surprisingly,
the expectation value of the bilineariψ̄γ5ψ is equal to zero; this phenomenon was explained in
[6, 10], and a brief hint will be given here: There is aU(1) remnant of the originalSU(2) flavour
symmetry, which combines with the original parity operatorP to yield zero expectation value of
iψ̄γ5ψ . In other words: We can find a redefinition of parity (a combination of parityand U(1))
which remains unbroken. This is the standard picture of the Aoki phase.

Now we compute these two fermionic bilinears using the p.d.f. formalism:

〈(iψ̄γ5ψ)2〉 = 2

〈

1
V 2 ∑

j

1

λ 2
j

〉

−4

〈(

1
V ∑

j

1
λ j

)2〉

, (3.1)

〈(iψ̄γ5τ3ψ)2〉 = 2

〈

1
V 2 ∑

j

1

λ 2
j

〉

, (3.2)

whereλ j the eigenvalues of theγ5∆ operator at zero external source. The expression (3.1) can be
easily generalized to any number of flavours.

We must remark that the p.d.f. can not predict what values will the expressions (3.1) and (3.2)
take. These depend on the specific properties of the eigenvalues of the chosen discretization of the
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Dirac operator. In fact, as we will see later, the results change dramaticallyfor the Ginsparg-Wilson
regularization, even though the expressions (3.1) and (3.2) remain the same.

For (3.1) to be zero, as the current picture of the Aoki phase demands,the following cancella-
tion must happen

2

〈

1
V 2 ∑

j

1

λ 2
j

〉

= 4

〈(

1
V ∑

j

1
λ j

)2〉

, (3.3)

as we know that the left hand side of the equation must be non-zero, by virtue of (3.2). This
relationship among the eigenvalues of theγ5∆ operator is non-trivial; in fact, for every even moment
of the distribution function we obtain a different sum-rule, by enforcing〈(iψ̄γ5ψ)2n〉 = 0.

From this point on, we face two different possibilities:

1. The standard picture of the Aoki phase is right, and these sum-rules must be fulfilled by
the eigenvalues ofγ5∆. In fact, the p.d.f. can be used to derive easily the sum-rules, which
remind to those obtained by Leutwyler and Smilga in the continuum in [11]. This point was
exposed by S. Sharpe in [12].

2. The current understanding of the Aoki phase is incomplete, for it seems improbable that the
eigenvalues ofγ5∆ comply with 〈(iψ̄γ5ψ)2n〉 = 0 for any value ofn. So there must exist
a new phase which verifies〈(iψ̄γ5ψ)2n〉 6= 0 for some value ofn. As χPT predicts the
standard picture for the Aoki phase, the realization of this case would imply that χPT is, in
some sense, incomplete. An analysis of this point of view was done in [9].

At this moment, there is no theoretical proof to decide between one of this two realizations. In order
to distinguish which one occurs, a dynamical fermion simulation in the Aoki phase is mandatory,
measuring the eigenvalues of theγ5∆ operator, and computing the sum-rules.

4. The Ginsparg-Wilson scenario

As we have seen, the original Vafa and Witten theorems fail, due to the existence of exceptional
configurations, in the later scenario, which, on the other hand, is of paramount importance in lattice
QCD. So, is there any way we can say something concrete about QCD symmetries?. The answer is
yes, but we need to choose a ‘small eigenvalue free’ regularization. Ithappens that the Ginsparg-
Wilson2 fermions fulfill this requirement; the p.d.f. will do the rest.

We denote byD the Ginsparg-Wilson operator; as we know, its eigenvaluesλ̄ j are complex,
and lie in a circumference of radius1a in the complex plane, whose center is in the real axis, at
the point 1

a . Using the standard properties of the Ginsparg-Wilson operator, we cancompute the
eigenvalues of the hermitian operatorγ5(D+m), which are

µ± j =

{

±

√

(1+am)
∣

∣λ̄ j
∣

∣

2
+m2 λ̄ j /∈ R

+ and/or −
(

λ̄ j +m
)

λ̄ j ∈ R

, (4.1)

2Strictly speaking, we will work with a Dirac operator which satisfies
{

D−1,γ5
}

= aγ5, whereas the Ginsparg-
Wilson regularization only requires

{

D−1,γ5
}

= aRγ5, with R a local operator. Nevertheless, the results can be applied
to any version of Ginsparg-Wilson fermions, although the calculations mayeventually become harder.
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since when̄λ j /∈R, the eigenvalues associated toλ̄ j andλ̄ ∗
j are paired (±), but if λ̄ j ∈R, this needn’t

be he case, giving rise to zero modes, and non-vanishing topological charge. As an interesting and
useful remark, we see that theµ ’s are real, and non-zero for a non-vanishing massm. If we look
at the expression (4.1), we can see that the modulus of these eigenvaluesis bounded from below
by m (this was remarked in [13]). So we establish that1

µ2
± j

≤ 1
m2 , which in turn implies that, for a

non-zero mass, the following expectation value3 is zero in the thermodynamic limit

〈(iψ̄γ5τ3ψ)2〉 = 2

〈

1
V 2 ∑

j

1

µ2
j

〉

≤
24

V m2
−→

V→∞ 0. (4.2)

The summatory is removed, adding a factor equal to the number of eigenvalues 24V . This result
states thatthere is no Aoki phase in lattice QCD with Ginsparg-Wilson fermions. But we do not
know yet whether the Lagrangian symmetries are spontaneously broken or not. Let’s look at the
next order parameter

〈(iψ̄γ5ψ)2〉 = 2

〈

1
V 2 ∑

j

1

µ2
j

〉

−4

〈(

1
V ∑

j

1
µ j

)2〉

. (4.3)

The first term of the r.h.s. is just equal to (4.2), so it must vanish in the thermodynamic limit. The
second term is minus the square of a real quantity, then it must be negative or zero. The requirement
(which we will assume) thatiψ̄γ5ψ be an hermitian operator sets to zero this second term in the
thermodynamic limit, for the expectation value of the square of an hermitian operator must be
positive, thence

lim
V→∞

〈(

1
V ∑

j

1
µ j

)2〉

= 0. (4.4)

As both terms in the r.h.s. of (4.3) go to zero as the volume increases, this proves that parity is not
spontaneously broken in lattice QCD with two flavours of Ginsparg-Wilson fermions4, at least for
one of the more standard order parameters. In fact, we know that there exists an index theorem for
Ginsparg-Wilson fermions [14], thus we can relate the zero modes ofD to the topological charge
density,

〈(

1
V ∑

j

1
µ j

)2〉

=

〈

(

Q
mV

)2
〉

(

2
2+am

)2

= −
χT

V m2

(

2
2+am

)2

. (4.5)

Taking into account (4.4), we deduce that the topological charge densitydistribution function must
be a Dirac delta centered in the origin.

Since we proved that both terms in the r.h.s. of (4.3) must vanish independently in the thermo-
dynamic limit, this result also applies to a single flavoured condensate

3If the expressions (3.2) and (4.2), or (3.1) and (4.3) are compared, one will notice that they are identical, even
though they correspont to different lattice regularizations. These expressions are regularization independent (see (2)).
But the specific properties of the eigenvalues do depend on the regularization, and make the Wilson and Ginsparg-Wilson
fermions behave in different ways.

4The result can be extended to any number of flavours with not much effort.
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〈(iψ̄uγ5ψu)
2〉 =

〈

1
V 2 ∑

j

1

µ2
j

〉

−

〈(

1
V ∑

j

1
µ j

)2〉

, (4.6)

and, by extension, to any linear combination of the single-flavoured condensatesψ̄ jγ5ψ j.

As far as flavour symmetry is concerned, we have proved that
〈

(iψ̄γ5τ3ψ)2
〉

vanish in the
infinite volume limit, but this is not enough, as this expectation value is forced to bezero because
of parity conservation. Thus, we would like to investigate the quantity

∣

∣

∣
〈(ψ̄τ3ψ)2〉

∣

∣

∣
=

2
V 2

∣

∣

∣

∣

∣

〈

∑
j

1
(

λ̄ j +m
)2

〉∣

∣

∣

∣

∣

≤
2

V 2

〈

∑
j

1
∣

∣

∣

(

λ̄ j +m
)2
∣

∣

∣

〉

=

2
V 2

〈

∑
j

1
[

[

Re
(

λ̄ j
)

+m
]2

+ Im2
(

λ̄ j
)

]2

〉

≤
24

V m2
−→

V→∞ 0. (4.7)

Thus we can affirm that neither parity nor flavour are spontaneously broken in this regularization.
At zero mass, we cannot establish an upper bound for the observables, hence the argument is not
valid anymore. The fundamental question is: Why can we bound from above the value of these
obervables at non-zero fermion mass?. The answer is related to a property of the Ginsparg-Wilson
operator, that is,

{

D−1,γ5
}

= aRγ5, with R a local operator. We can write a similar equation for
Wilson fermions, whereR is anon-local operator, but in the case of Ginsparg-Wilson fermions, the
locality of R make the eigenvectors ofD look like chiral solutions at long distances. So, no quasi-
chiral, exceptional configurations, at non-zero mass, are allowed, theAoki phase is completely
forbidden, and therefore, the symmetries are respected.

Other interesting results are straightforward from this point on. For instance, we can relate
the transverse suceptibility, the topological susceptibility and the chiral condensate. First of all, we
compute the transverse susceptibility,

χ5 = V
〈

(iψ̄γ5ψ)2
〉

=

〈

2
V ∑

j

1

µ2
j

〉

+
4χT

m2

(

2
2+am

)2

. (4.8)

Now we write the first summand of the r.h.s. in terms of the chiral condensate, by making use of
detA = detγ5A:

〈ψ̄ψ〉 = −

〈

1
V

d
dm

lndet(D+m)2
〉

= −
2
V

〈

∑
j

m

µ2
j

〉

+O(a)+O(ma2), (4.9)

so we arrive at

χ5 = −
〈ψ̄ψ〉

m
+

4χT

m2 , (4.10)

where we have dropped the factor
(

2
2+am

)2
assuming that we are close to the continuum limit. This

relationship is not new at all, what we are showing here is simply a way to derive it. The interesting
conclusion comes taking the vanishing mass limitm → 0. Then, as theη is not a Goldstone boson,
χ5 must remain finite, so

6
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lim
m→0

mχ5 = 0⇒ lim
m→0

χT =
m
4
〈ψ̄ψ〉 ∝ f 2

π m2
π . (4.11)

5. Final remarks

The p.d.f. formalism can be used to cast some light on the old aim of understanding the realiza-
tion of symmetries of QCD from first principles. Applying the p.d.f. to the Wilson regularization,
we can explore certain, somewhat overlooked, properties of the Aoki phase. In fact, the p.d.f.
states that, either the fermionic bilineariψ̄γ5ψ can take non-zero values in the Aoki phase, ex-
tending thus the current picture of the phase diagram, or there exists an infinite tower of sum-rules
the eigenvalues of the Dirac-Wilson operator must comply with. So far, no theoretical argument is
strong enough to prove one of these scenarios to be right, thus a dynamical fermion simulation is
mandatory at this point.

But the most interesting conclusions appear when we apply the p.d.f. formalism to the Ginsparg-
Wilson regularization. There, we see how parity and vector-like symmetries must be realized for a
non-vanishing fermion mass. This is a major result that overcomes the difficulties found by [1, 2].
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