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1. Introduction

Thanks to the theoretical and algorithmic improvements of recent years, and to the ever in-
creasing computational power available, state-of-the-art Lattice QCD simulations now routinely
take place at dynamical pion masses in the 200–300 MeV ballpark [1]. In this mass region the
effective description of the dynamics of pseudo-Goldstone bosons at low energies by means of chi-
ral perturbation theory (ChiPT) is expected to work well at a quantitative level. This gives rise to
a fertile interaction: by matching Lattice QCD and ChiPT results it is possible, on the one hand,
to test the effective description vs. the fundamental theory; and, on the other hand, low-energy
constants (LECs) can be determined from first principles, thus providing a sounder foundation to
phenomenological applications of ChiPT.

One particularly interesting aspect of the matching between QCD and ChiPT is the role of
finite volume effects [2] (we will always assume that the theory lives in an Euclidean four-volume
V = L3×T ). While for large enough values of L (one typical estimate is mπL & 4) the latter are
expected to be strongly suppressed, and give rise only to small corrections to the infinite volume
expansion in powers of pion momenta, the situation changes completely when the Compton wave-
length of pions approaches L, i.e. mπL ∼ 1. In this regime slow pion modes, strongly affected by
the finite volume, dominate the path integral in the effective theory, and the expansion in powers of
p2/Λ2

χ breaks down. Indeed, the resulting finite volume chiral regimes involve a rearrangement of
the chiral expansion, in which mass effects are suppressed relative to volume effects; as a conse-
quence, less LECs appear at any given order in the expansion relative to the infinite volume case.
This in turn leads to a very different setup for the determination of LECs, which offers both the
potential to obtain cleaner computations of some of the latter (those whose effects are unsuppressed
in the quark mass), and a cross-check of the systematic uncertainties of “infinite”-volume studies.

Another key property of finite volume chiral regimes is that the low-lying spectrum of the
Dirac operator can be described by an appropriate random matrix theory (RMT) [3]. Direct quan-
titative tests of such description have already been obtained both in quenched [4] and N f = 2
QCD [5]. Since RMT predictions are sensitive to the value of the chiral condensate, they provide
yet another way of studying chiral symmetry breaking, using simple spectral observables.

Obviously enough, an adequate treatment of chiral symmetry on the lattice is especially rele-
vant in this context. While simulations of N f = 2(+1) QCD with full chiral symmetry have proven
feasible, they are still limited to relatively small values of the inverse lattice spacing and/or physical
volume [6]. A way to overcome this is to use a mixed action approach, in which chiral symmetry
is exactly preserved at the level of valence quarks only. Our aim is to develop such a framework by
considering Neuberger valence quarks on top of N f = 2 CLS ensembles, obtained from simulations
with non-perturbatively O(a) improved Wilson sea quarks. A key ingredient of our study will be
the matching of QCD to ChiPT in a mixed regime, in which sea quark masses are in the p-regime
and valence quark masses can take values both in the p- and the ε-regime [8].

Here we will report on our first experiences with this approach, involving technical tests and
finite volume regime studies along the lines hinted at above. We present results for spectral observ-
ables, which provide information on Σ and L6. Obviously, mixed actions also have huge potential
for phenomenological applications in which the exact preservation of chiral symmetry is greatly
advantageous, e.g. to simplify the renormalisation of composite operators entering hadronic ma-
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trix elements. Along this line, first data for standard two- and three-point functions, as well as for
correlation functions computed in the chiral limit via saturation with topological zero modes [9],
will be covered in upcoming publications.

2. Probing the deep chiral regime with mixed actions

2.1 Mixed chiral regimes

While the exploration of finite volume regimes ideally involves simulations with extremely
light sea quarks, it is still possible to access them in a situation in which sea pions have moderately
large masses. The main idea is to formulate ChiPT in a so-called mixed regime [8], in which Nh

quarks have masses such that the p-regime requirement mhΣV� 1 is satisfied, while Nl quarks have
masses that fulfill the ε-regime condition mlΣV . 1. The chiral expansion proceeds by treating the
Goldstone modes associated to the Nh heavier quarks essentially as decoupling particles. In this
way, NLO expressions for meson correlators in the light channel preserve their typical ε-regime
features, with some extra terms (involving NLO LECs) induced by loops involving heavier modes.
Finally, it is possible to quench one of the sectors, and extend the results for the full theory with the
techniques of partially quenched ChiPT. Indeed, we will be interested in considering a quenched
(valence) ε-regime sector and a dynamical p-regime sector. When matching the chiral effective
theory to QCD the valence sector of the latter will involve Neuberger quarks, while the sea sector
will contain non-perturbatively O(a) improved Wilson N f = 2 CLS configurations.

Let us consider e.g. the NLO partially quenched ChiPT prediction for the two-point function
of (the zeroth component of) a left-handed current J0 involving light quarks. We start from the
LO chiral Lagrangian

LChiPT =
F2

4
Tr
[
∂µU∂µU†]− Σ

2
Tr
[
eiθ MU +U†Me−iθ

]
(2.1)

and the left handed chiral current defined as J a
µ = (F2/2)Tr[T aU∂µU†], with T a a flavour gener-

ator. Its two-point function can be written as

Tr[T aT b]C (x0) =
∫

d3x
〈
J a

0 (x)J b
0 (0)

〉
. (2.2)

We consider observables defined at a fixed value of the topological charge ν . The NLO result for
C assuming the specific kinematics we are interested in can be found in [8]

C (x0) =
F2

2T

{
1− Nl

F2

[
G(0,M2

hh/2)−8L4M2
hh +

T
L3 kh

00

]
+

2T
F2L3 σ̃ν(ml,mh)h1(x0/T )

}
. (2.3)

In this expression M2
ab = (ma + mb)Σ/F2 is the mass of a p-regime pseudo Nambu-Goldstone

boson; the Green function G is defined as G(x,M2) = V−1
∑n∈Z4 eipx(p2 + M2)−1, with momenta

p = 2π(n0/T,n/L); kh
00 is a constant that depends on the box geometry only; h1(τ) = 1

2 [(τ− 1
2)

2−
1
12 ]; and σ̃ν is an explicitly known function of the dimensionless variables mΣV , that depends on the
topology. As announced, eq. (2.3) displays both the characteristic ε-regime parabolic dependence
on x0, and a characteristic p-regime NLO correction proportional to L4. Interestingly, Eq. (2.3)
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can be rewritten in the same form as in the ε-regime quenched case, provided that the LEC F is
replaced by the “effective” LEC

F̃2 = F2
{

1− Nh

F2

[
G∞(0,M2

hh/2)−8L4M2
hh
]}

, (2.4)

where G∞ is the infinite volume closed propagator, obtained by substituting the sum over momenta
in the Green function for an integral.1

The bottomline of this analysis is that the current two-point function in QCD, computed in
a mixed action framework with ε-regime valence quarks and p-regime sea quarks, is expected to
exhibit a quenched ε-regime form, which can be fitted for F̃ ; by computing this effective LEC at a
number of sea pion masses M2

hh it is then possible to extract F and L4. It has to be stressed that the
LECs thus computed are the ones of the N f = 2 theory.

Similar results can be shown to hold for other LECs, rendering the strategy general. For
instance, the corresponding effective chiral condensate has the form

Σ̃r = Σ

[
1− Nh

F2

[
G∞(0,M2

hh/2)−16L6M2
hh
]
+

E∞

F2

]
, (2.5)

where E∞ is the well-known singlet contribution related to the renormalisation of Σ in the quenched
theory. Eq. (2.5) is particularly useful, as it can be used to extract information about LECs from
spectral observables, as will be discussed below.

2.2 Random matrix theory

It is well known that at the leading order of the chiral ε-expansion the partition function of
ChiPT coincides, at any fixed value of the topological charge, with that of an appropriate chiral
Random Matrix Theory describing the probability distributions of the eigenvalues of the Dirac
operator [3]. RMT provides explicit predictions for the probability distributions pk(ζk; µ), where
λk = ζk/(ΣV ) is the k-th eigenvalue of the massless Dirac operator and µ = mΣV , where m is to be
interpreted as a (small) sea quark mass. pk depends on the number of dynamical flavours and the
topological charge ν through the combination ξ = N f + |ν |.

This establishes a direct connection between the spectrum of the Dirac operator and the effec-
tive description of QCD at low energies. As RMT provides an extremely detailed description of
spectral observables, such connection has an enormous potential as a tool to improve our under-
standing of the QCD/ChiPT matching. Of course, there is need of quantitative studies that check
the extent of corrections to RMT predictions, as those already performed in [4, 5]. One of our
purposes is to extend these analyses to larger physical volumes and closer to the continuum limit.
Also, we intend to explore the potential of spectral observables to determine chiral LECs. Of par-
ticular interest to us is the matching of spectral QCD results to RMT in a mixed regime, in which
eigenvalues of the Neuberger-Dirac operator are computed on N f = 2 configurations with p-regime
dynamical pion masses.

If sea pions were in the ε-regime, the results for 〈λk〉ν (where 〈〉ν stands for expectation
values in a fixed topological sector) are expected to match the RMT results for ξ = 2 + |ν |. If, on

1This implies matching the mixed-regime expansion to a quenched effective theory, which in turn involves a number
of subtleties, mainly related to the treatment of mixed heavy-light modes. A detailed discussion can be found in [8].
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the other hand, the sea pion mass is large enough the theory will approach quenched QCD, and
RMT should be worked out at ξ = |ν |. One therefore expects that 〈λk〉ν displays a sea quark mass
dependence that interpolates between both extremes. Remarkably, RMT does provide a formula
that interpolates smoothly between the N f = 2 and N f = 0 cases, via the µ dependence of the
probability distribution pk. It is however unclear how this µ dependence should be interpreted in the
transition region between the ε- and p-regimes in sea quark masses, as in that case it is conceivable
that spectral observables may receive sizeable corrections at NLO in ChiPT, over which RMT has
in principle no control. The results obtained in [5] in this regard are inconclusive.

Indeed, a better grasp on the sea quark mass dependence can be obtained from a matching to
mixed-regime ChiPT: the LO partition function with p-regime sea pions is that of a quenched the-
ory in the ε-regime, with a sea pion mass-dependent value of Σ given by Eq. (2.5). This provides
definite predictions for the sea mass dependence of 〈λk〉ν . Consider e.g. ratios of average eigen-
values of the form 〈λk〉ν(M1)/〈λk〉ν(M2), (M1,2 are two different sea pion masses). If we match
〈λk〉ν to quenched ε-regime ChiPT (i.e. quenched RMT) we expect the effective theory to work
with appropriate values Σ̃r(M1,2) of the effective chiral condensate. Now, assuming no corrections
to the RMT predicion other than this mass dependence (which is consistent with our expansion
scheme), we have

〈λk〉ν(M1)
〈λk〉ν(M2)

=
〈ζk〉ν ,RMT

〈ζk〉ν ,RMT

Σ̃r(M2)
Σ̃r(M1)

=
Σ̃r(M2)
Σ̃r(M1)

. (2.6)

It follows that information on the mass dependence of Σ̃r, and hence on L6, can be obtained from
suitable eigenvalue ratios.

3. Results on Dirac spectral observables

We have carried out our computations on CLS lattices of size 48× 243. The configurations
have been generated with non-perturbatively O(a) improved fermions at β = 5.3 and sea quark
masses given by κ = 0.13635,0.13625. This roughly corresponds to a ≈ 0.08 fm and L ≈ 2 fm,
with dynamical pion masses slightly below 300 MeV and 400 MeV, respectively. We will refer to
these two lattices as D5 and D6. It has to be noted that for the D6 lattice we have two statistically
independent ensembles, that we dub D6a and D6b. We have analysed 237 D6 configurations and
137 D5 configurations; in both cases successive saved configurations are separated by 30 HMC
trajectories. Further details concerning the simulations can be obtained in [10]. Our Neuberger
fermion code is the same used in previous quenched studies [4, 11], and is designed specifically to
perform efficiently in the ε-regime [12].

A first, immediate application of having constructed the Neuberger-Dirac operator DN on a
given dynamical configuration is a non-ambiguous determination of the topological charge of the
latter by computing the index of DN. In Fig. 1 we show as an example the Monte Carlo history
of the topological charge for lattice D6, which shows that topology sampling proceeds smoothly,
although the topological charge is often observed to remain constant for several tens of trajectories.
The histogram in the lower panel shows the distribution of the measured topological charges, which
exhibits the expected Gaussian-like shape and width. This finding is consistent with the study
reported in [13], since our computations take place at a value of the lattice spacing sufficiently larger
than the threshold a∼ 0.05 fm below which topology is expected to exhibit freezing symptoms.
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Figure 1: MC history and distribution (right panel) of the topological charge in D6 lattices.
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Figure 4: Dependence of the effective couplings Σ̃r on M2
ss/F 2 for the partially-quenched theory with

Ns = 1 (solid) and Ns = 2 (dashed) . F = 90 MeV and the two lines correspond to the two extreme
values of L6 obtained in the phenomenological determinations reviewed in [17]. Of course in reality L6

can be different in both cases.
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values of L6 obtained in the phenomenological determinations reviewed in [17]. Of course in reality L6

can be different in both cases.

19

pr
eli

m
in
ar

y

Figure 2: Left panel: Ratios of Dirac eigenvalues in different topological sectors (k/l is shorthand for λk/λl)
for lattices D5 (top) and D6 (bottom). Upper right: ratios of eigenvalues for different topologies in lattice
D6. Bottom right: ratios of D5 and D6 eigenvalues at fixed topology (|ν |= 0, . . . ,3 from left to right in each
group). Horizontal ticks appearing in plots are quenched RMT predictions.

The 10 lowest lying eigenvalues of the Dirac-Neuberger operator have been computed on
both lattices D5 and D6, using the techiques described in [12]. As explained above, we expect
them to be described by quenched RMT probability distributions, with the appropriate value of the
effective chiral condensate in Eq. (2.5). As a test, the computed ratios λk/λl involving the four
lowest-lying eigenvalues are compared in Fig. 2 to quenched RMT for |ν | = 0,1,2. While the
RMT prediction seems to work well for ratios not involving λ1, the ratios λk/λ1 exhibit deviations
which are particularly noticeable in lattice D6. On the other hand, ratios between eigenvalues in
different topological sectors follow well RMT predictions also in the case of λ1, as shown in Fig. 2,
albeit with larger errors. The origin of the observed deviations, and its possible relation to chiral
corrections, will be the subject of further investigation.

In the spirit of the mixed regime ChiPT analysis, our data also allow to study the mass depen-
dence of the effective condensate, cf. Eq. (2.6). Fig. 2 shows to what precision ratios of eigenvalues
computed on gauge configurations with different dynamical pion masses do not depend neither on
topology nor on the eigenvalue number. This is a highly nontrivial test that the sea pion mass de-
pendence enters in the eigenvalues as predicted by our ChiPT description. Averaging over these
ratios leads to a preliminary value Σ̃(MD6)/Σ̃(MD5) = 0.68(4), where the quoted uncertainty is sta-
tistical only. The dependence on the sea pion mass, driven by the LEC L6, shows the expected sign.
A determination of the LEC itself will be the subject of a future detailed study.
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4. Outlook
We have implemented a mixed action approach to lattice QCD in which sea quarks are non-

perturbatively O(a) improved Wilson fermions, while valence quarks are Neuberger fermions. Nu-
merical techniques to deal with the latter that were developed in previous quenched studies have
proven similarly efficient in this context. As a first application we have studied the Dirac spectrum
in the background of dynamical configurations at a ≈ 0.08 fm, and compared our findings to ex-
pectations from mixed-regime ChiPT. The latter describe well the data, and allow us e.g. to study
the mass dependence of the chiral condensate.

In upcoming publications we will discuss results for standard two- and three-point functions,
both in the ε- and the p-regime, with a view to phenomenological applications. One specific topic
that remains to be addressed is the role of cutoff effects in the mixed action setup, and whether
O(a2) unitarity violating artifacts lead to sizeable scaling violations, as discussed in [14].
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