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1. Introduction

At present, most lattice QCD simulations are performed at unphysical light dynamical quark
masses. Fitting of lattice data to forms calculated in chiral perturbation theory (χPT) [1, 2] makes
possible a controlled extrapolation of lattice results to the physical light quarkmasses and to the
chiral limit. This approach also allows one to determine the values of low-energy constants (LECs)
in the theory, which are of phenomenological significance. Although three-flavor χPT has been
used successfully for simulations with 2+1 dynamical quarks, we are still interested in the applica-
tions of two-flavorχPT for the following reasons:

1. The up and down dynamical quark masses in simulations are usually much smaller than the
strange quark mass, which is near its physical value, hence SU(2)χPT may serve as a better
approximation and probably converges faster than SU(3)χPT.

2. Fits to SU(2)χPT can give us direct information about the LECs in the two-flavor theory,
especiallyl3 andl4.

3. By comparing results from these two different fits, we can study the systematic errors result-
ing from the truncations of each version ofχPT.

Recently, some groups have used SU(2)χPT for chiral fits to data from three-flavor simulations [3,
4]. Here, we perform such an SU(2) chiral analysis for MILC data from simulations with 2+1
flavors of staggered fermions.

2. Rooted SU(2) SχPT

For staggered quarks, the correct effective field theory is staggered chiral perturbation theory
(SχPT) [5, 6, 7, 8, 9], in which taste-violating effects at finite lattice spacing are incorporated
systematically. Physical quantities expressed in SχPT become joint expansions in both the quark
massmq anda2, wherea is the lattice spacing.

For each quark flavor, there are four species (tastes) in the continuumlimit. To obtain physical
results, we use the fourth root procedure to get a single taste per flavorin the continuum limit.
Although it has been shown that this procedure produces violations of locality at non-zero lattice
spacing non-perturbatively [10], recent work indicates that locality and universality are restored in
the continuum limit. For a recent review of the fourth-root procedure seeRef. [11] and references
therein.

In the two-flavor case, only up and down quarks appear in the chiral theory. Correspondingly,
there are only pions, and no kaons, in SU(2) SχPT. The staggered Lagrangian is formulated in
the same way as in Ref. [6], except that those parts related to the strange quark are omitted. Fol-
lowing the procedures used in the three-flavor case, one can calculate the partially-quenched light
pseudoscalar mass and decay constant through NLO. The result is [12]:
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wherel3 and l4 are the standard SU(2)χPT LECs, andp1 and p2 are two extra NLO LECs that
enter in the partially-quenched case.δ ′

V , δ ′
A are taste-violating hairpin parameters, andL′

(2), L′′
(2)

are taste-violating analytic LECs. Chiral logarithmsl(m2), l̃(m2) and residue functionsR, D are
given in Ref. [6], with the denominator mass-set arguments in the SU(2) case defined as:
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The numerator mass-set arguments of the residues are always{µΞ} ≡ {mUΞ}, where the taste label
Ξ is taken equal to the taste of the denominator set.

To Eqs. (2.1) and (2.2), we add the NNLO chiral logarithms that were calculated by Bijnens
and Lähde [13]. Since taste splittings are not included at NNLO, there is anambiguity in defining
the pion mass in the continuum formulae. In practice, we use the root mean square (RMS) average
pion mass in calculations of NNLO chiral logarithms. This is systematic at NNLO aslong as the
taste splittings between different pions are significantly less than the pion masses themselves. This
condition is best satisfied on the superfine and ultrafine lattices.

3. Ensembles and Data Sets

At the present stage, we have the MILC data for the light pseudoscalar mass and decay constant
at five lattice spacings from 0.15 fm to 0.045 fm, generated with 2+1 flavors of asqtad improved
staggered quarks. For each lattice spacing, we have several different sea quark masses as well as
many different combinations of valence quark masses. In order for the SU(2) formulae to apply,
we require both sea and valence quark masses to be significantly smaller thanthe strange quark
mass,i.e., msea

π ≪mK , and mvalence
π ≪mK . In the fits described below, we use the following cutoff

on our data sets:

ml ≤ 0.2mphys
s , mx +my ≤ 0.5mphys

s , (3.1)

whereml is the light sea quark mass, andmx andmy are the valence masses in the pion.
To be able to consider the strange quark as “heavy” and eliminate it from thechiral theory, it

is also necessary that taste splittings between different pion states be much smaller than the kaon

3
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Ensemble aml ams β size mπL

≈ 0.09 fm (F) 0.0062 0.031 7.09 283×96 4.14
≈ 0.09 fm (F) 0.00465 0.031 7.085 323×96 4.10
≈ 0.09 fm (F) 0.0031 0.031 7.08 403×96 4.22
≈ 0.09 fm (F) 0.00155 0.031 7.075 643×96 4.80

≈ 0.06 fm (SF) 0.0036 0.018 7.47 483×144 4.50
≈ 0.06 fm (SF) 0.0025 0.018 7.465 563×144 4.38
≈ 0.06 fm (SF) 0.0018 0.018 7.46 643×144 4.27

≈ 0.045 fm (UF) 0.0028 0.014 7.81 643×192 4.56

Table 1: Ensembles used in this analysis. The quantitiesaml andams are the light and strange sea quark
masses in lattice units;mπL is the (sea) Goldstone pion mass times the linear spatial size. The fine ensembles
are not used in our central value fit, but only in estimating systematic errors.

a ≈ 0.09 fm (F) ≈ 0.06 fm (SF) ≈ 0.045 fm (UF)

amS 0.031 0.018 0.014

aml 0.00155 0.0062 0.0018 0.0036 0.0028

mK(MeV) 574 613 525 548 565

mGoldstone
π (MeV) 177 355 224 317 324

mRMS
π (MeV) 281 416 258 341 334

mI
π (MeV) 346 463 280 359 341

Table 2: Kaon masses and lightest (sea) pion masses on some sample ensembles. Here three different pion
masses are shown: Goldstone, RMS and singlet.r1 = 0.3117fm is used.

mass. Furthermore, taste splittings should be significantly smaller than the pion mass itself for the
continuum formulae for the NNLO chiral logarithms to be approximately applicable.

The lattices that are at least close to satisfying all these conditions include four fine (a≈0.09 fm)
ensembles, three superfine (a≈0.06 fm) ensembles and one ultrafine ensemble (a≈0.045 fm). Rel-
evant parameters for these ensembles are listed in Table 1.

In Table 2, we list the Goldstone, RMS and singlet pion masses on representative ensembles.
It can be seen that for the fine (a≈0.09 fm) ensembles, either some pion masses are close to the
kaon mass, as on ensemble(aml ,ams) = (0.0062,0.031), or the taste splittings between pions are
comparable to the pion mass, as on ensemble(aml ,ams) = (0.00155,0.031). As a result, the data
from fine lattices may not be well described by SU(2) formulae with continuumNNLO chiral
logarithms. Our central fit uses superfine and ultrafine data only, while weinclude fits to all three
kinds of lattices to estimate systematic errors.

There are a total of 29 parameters in our fits. The following list shows how these parameters
are treated in the central fit.

(a) LO: 2 unconstrained parameters,µ and f .

(b) NLO (physical): 4 parameters,l3, l4 and two extra LECsp1, p2 that only appear in
partially-quenchedχPT. All of these parameters are unconstrained.

4
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(c) NLO (taste-violating): 4 parameters.δ ′
V ,δ ′

A are constrained within errors at the values
determined from SU(3) SχPT fits [14, 15];L′′

(2) andL′
(2) are constrained around 0, with width

of 0.3 as estimated in Ref. [14].

(d) NNLO (physical,O(p4)): 5 parameters (l1, l2, l7, p3, p4) that first appear in meson
masses and decay constants in the NNLO chiral logarithms.l1 andl2 are constrained by the
range determined from continuum phenomenology [16];l7 is not constrained since it is not
directly known from phenomenology [16]. The partially-quenched parametersp3 andp4 are
not constrained.

(e) NNLO (physical,O(p6)): 8 parametersci , constrained around 0 with width 1 in “natural
units” (see Ref. [14]).

(f) The physical LO and NLO parameters are allowed to vary with lattice spacing by an
amount proportional toαs(aΛ)2, which is the size of the “generic” discretization errors with
asqtad quarks, whereΛ is some typical hadronic scale. This introduces 6 additional parame-
ters that are constrained around 0 with width corresponding to a scaleΛ = 0.7GeV.

Alternative versions of the fits, in which the width of the constraints are changed, or some con-
strained parameters are left unconstrained (orvice versa), have also been tried, and the results from
those fits are included in the systematic error estimates.

4. Preliminary Results

For the central fit, we use three superfine ensembles(aml ,ams) = {(0.0018,0.018), (0.0025,
0.018), (0.0036,0.018)} and one ultrafine ensemble(aml ,ams) = (0.0028,0.014). This fit has a
χ2 of 37 with 33 degrees of freedom, giving a confidence level CL= 0.3. The volume dependence
at NLO has been included in the fit formulae. A very small (≤ 0.3%) correction for “residual” finite
volume effects [17, 18] is applied at the end of the calculation and incorporated in the systematic
errors of our final results.

In Fig. 1, we show the fit results forfπ andm2
π/(mx+my) as functions of the sum of the quark

masses (mx + my). The red curves show the complete results through NNLO for full QCD in the
continuum, where we have set taste splitting and taste-violating parameters to zero, extrapolated
physical parameters asa → 0 linearly in αsa2, and set valence quark masses and light sea quark
masses equal. Continuum results through NLO and at tree level are shownby blue and magenta
curves, respectively. It can be seen that the convergence of SU(2) χPT is much better for the decay
constant than for the mass. Nevertheless, the chiral corrections in both cases appear to be under
control.

The SU(2) plots presented previously in Ref. [19] are somewhat different from those shown
here because the earlier fits allowed fora2 variations in the NNLO analytic parameters (ci). Such
variations are of higher order than the NNLO terms included in this work.

At the last step, we find the physical values of the averageu,d quark mass ˆmby requiring that
theπ has its physical mass, and then find the decay constant corresponding tothis point in Fig. 1
(left). With the scale parameterr1 = 0.318(7) fm [14] determined fromϒ-splittings, we obtain the
result for fπ :

fπ = 128.3(9)
(

+20
−8

)

MeV (4.1)
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(a) (b)

Figure 1: SU(2) chiral fits tofπ (left) andm2
π/(mx +my)(right). Only points with the valence quark masses

equal (mx = my) are shown on the plots

where the first error is statistical and the second is systematic. This agreeswith the PDG 2008
value, fπ = 130.4±0.2MeV [20]. Alternatively, using the pion decay constant from NNLO SU(3)
χPT fits to define our scale givesr1 = 0.3117(6)

(

+12
−31

)

fm [15]. With this newr1, we obtain:

f2 = 123.7(9)(18)MeV B2 = 2.89(2)
(

+3
−8

)

(14)MeV

l̄3 = 3.0(6)
(

+9
−6

)

l̄4 = 3.9(2)(3) (4.2)

m̂= 3.21(3)(5)(16)MeV 〈ūu〉2 = −[280(2)
(

+4
−7

)

(4)MeV]3

The quark masses and chiral condensate are evaluated in theMS scheme at 2GeV. We use the
two-loop renormalization factor in the conversion [21]. Errors from perturbative calculations are
listed as the third error in these quantities. All the quantities agree with results from SU(3) SχPT
fits [15] within errors.

5. Discussion and Outlook

We have performed NNLO SU(2) chiral fits to recent asqtad data in the lightpseudoscalar
sector. Results for SU(2) LECs, the pion decay constant, and the chiralcondensate in the two-flavor
chiral limit are in good agreement with those obtained from NNLO SU(3) fits (supplemented by
higher-order analytic terms for quantities involving strange valence quarks)[15]. It can be seen
from our plots that SU(2)χPT within its applicable region converges much faster than SU(3)χPT.
For the point 0.05 on thex-axis in Fig. 1, the ratio of the NNLO correction to the result through
NLO is 0.3% for fπ and 2.6% formπ/(mx + my). In contrast, the corresponding numbers in the
SU(3) fits are 2.9% and 15.6% respectively (Fig. 2 of Ref. [15]), although the large correction in
the mass case is partly the result of an anomalously small NLO term. Note that the SU(3) plots
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use a non-physical strange quark mass,ms = 0.6mphys
s , while for the SU(2) plots, the strange quark

mass is near the physical value,ms ≈ mphys
s . This explains why the two-flavor chiral limits on the

SU(3) and SU(2) plots are not the same.
Since the simulated strange quark masses vary slightly between different ensembles, the pa-

rameters in SU(2) SχPT should also change with ensemble [12]. We plan to incorporate this effect
in our fit to see if we can improve the confidence levels. Another step would be to include the kaon
as a heavy particle in SU(2) SχPT [22] in order to study the physics involving the strange quark,
e.g., the kaon mass and decay constant. This approach has recently been used in Refs. [3, 4].
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