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1. Introduction

Discretization effect is one of the most significant sources of the systematicerror in lattice
QCD calculations. The improvement of lattice action and operators have therefore been extensively
studied since the early days of lattice field theory. The most well-known and widely used example is
the clover fermion action [1], which removes theO(a) error in the Wilson’s original lattice fermion
action. According to the Symanzik’s improvement program [2], it adds a dimension-five operator
to the lattice action to cancel the source of error ofO(a) present in the Wilson fermion action. A
non-perturbative method to tune the parameter in the action has also been established later [3]. For
further improvement, one has to add dimension-six and dimension-seven operators consecutively,
as discussed in [4], for instance. These highly improved lattice actions arenot so popular in the
current lattice QCD simulations, since the action contains many terms with parameters to be tuned.

One of the reasons for the difficulty of designing highly improved lattice fermion operator
is that the number of operators to be considered is large because of the explicit violation of the
chiral symmetry in the Wilson fermion action. Indeed, theO(a) term appears because of the chiral
symmetry violation, while the chirally symmetric lattice actions do not have this contribution from
the beginning as one cannot write down the relevant operator of dimension-five while preserving
chiral symmetry. The same argument applies atO(a2m+1) in general (form a positive integer). In
other words, if one starts the improvement program from chirally symmetric lattice actions, the first
error one encounters isO(a2), and once it is removed, the next isO(a4). Therefore, the effect of
improvement is much more dramatic than in the case of the improvement of the Wilson fermion. In
fact, theO(a2)-improvement of the staggered fermion has been worked out and used in numerical
simulations [5]. It uses this property of chirally symmetric lattice fermion action. When used for
heavy quarks, one can greatly accelerate the convergence to the continuum limit.

In this work we consider theO(a2)-improvement of the overlap fermion [6]. The overlap
fermion preserves exact chiral symmetry through the Ginsparg-Wilson relation [7]. Although the
numerical cost is high in the practical use of the overlap fermion, dynamicalfermion simulations
have already been performed by the JLQCD and TWQCD collaborations, from which many in-
teresting physics results have been obtained thanks to its excellent chiral property (for a recent
summary, see [8]).

The improvement can be achieved by two steps,i.e. improvement of the action and the field
rotation. Since the form of the overlap fermion is largely restricted by the Ginsparg-Wilson re-
lation, improvement of the lattice action is done by modifying the kernel operatorto be used to
construct the overlap operator. To be explicit, we use the fermion action ofEguchi-Kawamoto [9]
and Hamber-Wu [10], which is called the D34 action in the convention of [4].Once we remove the
Lorentz-violating discretization effects ofO(a2) by this choice of the kernel operator, remaining
errors can be removed by field rotations.

2. Formulation of the improved operator

The overlap operator in the massive case is defined by

Dov(mq) =

(

1− amq

2ρ

)

Dov +mq, (2.1)
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where the massless operatorDov is given by

Dov =
ρ
a

(

1+
X√
X†X

)

, X = Dw − ρ
a

. (2.2)

The parameterρ controls the large negative mass of the overlap kernel. The conventionalchoice
for the kernel operator is that of the Wilson fermionDw, which is

Dw = ∑
µ

(γµ∇µ −
1
2

a∆µ) ∼ /D− a
2

D2 +O(a2). (2.3)

Near the continuum limit, it reduces to the continuum Dirac operator /D plus theO(a) error coming
from the Wilson term.∇µ and∆µ are first- and second-order covariant lattice derivatives, respec-
tively.

Near the continuum limit, the overlap operator with the Wilson kernel becomes

Dov = /D− a
2ρ

/D2 +
a2

6 ∑
µ

γµD3
µ +

a2

2ρ2

(

/D3− ρ
2
{ /D,D2}

)

+O(a3). (2.4)

The O(a) term can be simply removed by a field rotation proportional toDov, while theO(a2)

terms, especially the third term of right-hand side which violates the Lorentz symmetry, cannot
be removed. The usual overlap operator thus has anO(a2) discretization error. To remove the
Lorentz-violating term, we introduce the improved kernel, which is closer to thecontinuum limit
D′

w ∼ /D+O(a3). Then, the overlap operator takes a simple form up toO(a4) errors:

D′
ov = /D− a

2ρ
/D2 +

a2

2ρ2 /D3− 3a3

8ρ3 /D4 +O(a4). (2.5)

With this operator we can remove the unwanted terms up to and including theO(a3) term by a field
rotation proportional toDov, and the remaining errors start fromO(a4).

As an improved kernel which has noO(a) andO(a2) errors, we use the D34 action. Massless
D34 action is defined by

DD34 = ∑
µ

∇µ
(

1−ba2∆µ
)

γµ + ∑
µ

ca3∆2
µ . (2.6)

In order to remove theO(a2) error at tree level,b = 1/6. The parameterc is an arbitrary parameter
to control the mass of doublers. We takec = 1/6 in the following. For the free case, this action
has noO(a) andO(a2) error, but it is no longer the case once the gauge interaction is turned on.
In particular, theO(a) term may arise as radiative corrections, and one has to add another term to
cancel it. The explicit form of this action on the lattice is

aDD34 = 4δx,y −
2
3 ∑

µ

[

(1− γµ)Uµ,xδx+µ,y +(1+ γµ)U†
µ,x−µδx−µ,y

]

+
1
12∑

µ

[

(2− γµ)Uµ,xUµ,x+µδx+2µ,y +(2+ γµ)U†
µ,x−µU†

µ,x−2µδx−2µ,y

]

. (2.7)
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We now consider the field rotation to remove the remaining discretization effects. Starting
from the continuum action,

∫

d4x ψ̄c(x)( /D + mq)ψc(x) with fermion fieldsψc and ψ̄c, one may
define a rotation

ψc = Ωcψ ψ̄c = ψ̄Ω̄c, (2.8)

which produces the action
∫

d4x ψ̄(x)D′
ov(mq)ψ(x) corresponding to (2.5). Namely, the rotation

satisfy the relationD′
ov(mq) = Ω̄c( /D + mq)Ωc. So far, the rotation matricesΩc andΩ̄c are written

in terms of the continuum operator /D. Note that a field rotation does not affect spectral quantities,
as far as the Jacobian of the transformation is taken into account. The Jacobian may affect the
renormalization of the gauge coupling at the quantum level but does not matter at the classical
level.

There are several choices of the rotations to identify the continuum Dirac operator as the im-
proved overlap operator up to neglected higher order terms. Since the higher powers of the overlap
operator, such asD2

ov, in the lattice action is computationally expensive in practical simulations, we
arrange the field rotation so that they vanish in the lattice action. Our choice ofthe field rotation is

Ωc = 1− a
2ρ

/D+
a2

2ρ2 /D2− 3a3

8ρ3 /D3− mqa2

4ρ2 ( /D−mq)

(

1− a
2ρ

/D

)

, Ω̄c = 1. (2.9)

With this choice, the massive improved operator takes a simple form

D′
ov(mq) =

(

1− a
2ρ

M(mq,ρ)

)

D′
ov +M(mq,ρ) (2.10)

with M(mq,ρ) = mq

(

1+
m2

qa2

4ρ2

)

. It means that one can simply use the conventional overlap oper-
ator in the numerical simulation except that the kernel is improved. Since the rotation operator is
proportional to /D, the on-shell quantities are unchanged, and off-shell amplitudes are obtained by
undoing the rotation. To do so, the lattice version of the rotation is given by

ΩL = 1− a
2ρ

D′
ov +

a2

4ρ2 D′2
ov +

a3

8ρ3 D′3
ov−

mqa2

4ρ2 (D′
ov−mq)−

m2
qa3

8ρ3 D′
ov, Ω̄L = 1, (2.11)

whereΩL and Ω̄L are the same asΩc and Ω̄c up to theO(a3) terms. The off-shell improved
propagator is then constructed asΩLD

′−1
ov (mq)Ω̄L = ( /D+mq)

−1 +O(a4) 1, which does not require
additional inversion of the overlap operator.

3. Relations at the tree level

Here, we compare the improved overlap fermion action with the unimproved oneat the tree
level. We consider the dispersion relation

E(~p) =
√

~p2 +m2
q +O(an), (3.1)

1We note that this construction of the rotation has an apparent problem that the manifest chiral symmetry of the
form γ5SF (x,y)+ SF (x,y)γ5 = 0 is lost. We will discuss on a modification of the lattice action to satisfy this condition
in future publications.
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Figure 1: Dispersion relation with the Wilson (unimproved) and with the improved kernels. Left shows the
massless case, while the right is atmqa = 0.5.

0 0.2 0.4 0.6 0.8 1
m

q
a

0.5

0.6

0.7

0.8

0.9

1

1.1

C
(p

)

Unimproved

Continuum

Improved

0 0.2 0.4 0.6 0.8 1
m

q
a

0.5

0.6

0.7

0.8

0.9

1

1.1

C
(p

)

Unimproved

Continuum

Improved

Figure 2: Effective speed of light for thep = (0,0,0) (left) andp = (2π/L,0,0) (right). The lattice volume
L = 16 is assumed; 2π/L ≃ 0.39.

which contains the lattice artifact ofO(an). The powern is 2 for the Wilson kernel while it should
be 4 for the improved kernel. Figure 1 showsE(~p) for massless (left) and massive (right) cases.
We can see that the improved operator certainly gives the dispersion relation close to the continuum
one. To see more quantitatively, in Figure 2 we show the effective speed of light defined by

c(~p)2 =
E(~p)2−E(~0)2

~p2 , (3.2)

for ~p = (0,0,0) (left panel) and~p = (2π/L,0,0) at L = 16 (right panel). The results are shown as
a function ofmqa. These plots imply that improved operator indeed very well reproduces thecon-
tinuum dispersion relation with only a few per cent errors up tomqa ∼ 0.5. while the unimproved
operator shows much larger deviation already very close tomqa = 0.

We also look at the off-shell amplitude (or the quark propagator) at the tree level. We parame-
terize the quark propagatorSF(p) asSF(p) = F1(p) /p+F2(p)mq after the appropriate rotationΩL.
We extractF1(p) andF2(p) through

F1(p) =
1
4

p2 +m2
q

p2 tr[i /pSF(p)] = 1+O(an) (3.3)

F2(p) =
1
4

p2 +m2
q

m2 tr[mqSF(p)] = 1+O(an). (3.4)
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Figure 3: Left panel showsF1(p) and right panel showsF2(p) versus(ap)2. The direction of momentum is
p = (1,1,1,1)

In Figure 3,F1(p) (left panel) andF2(p) (right panel) are shown. Since the improved operator has
noO(a2) term, the slope of the curve corresponding to the improved action vanishes near(ap)2 = 0.
These plots are shown formqa = 0.5.

4. Non-perturbative test on a dynamical lattice

We also test the improved overlap fermion action by calculating the meson dispersion rela-
tion. We use the gauge configurations including 2+1 flavors of dynamical quarks generated by the
JLQCD and TWQCD collaborations [8]. The lattice spacing is abouta ≃ 0.11 fm, and the lattice
size is 163×48. Sea quark masses aremuda = 0.015 andmsa = 0.080.

For the valence quark, we use the improved overlap fermion constructed inthis work with
ρ = 1.4. We calculate the dispersion relation of the pseudo-scalar meson at several different valence
quark masses between 0.050 and 0.800 in the lattice unit.

The effective speed of light is shown in Figure 4. We observe large statistical fluctuations for
small valence quark masses, as always happens for the correlators withfinite momenta. For larger
quark mass region, we find that the improved operator indeed gives the value closer to unity. Below
mqa ≈ 0.5, the deviation of the speed of light from 1 is only a few per cent.

So far, we use the improved kernel as its original form. However, theO(a) andO(a2) errors in
the kernel operator may appear as radiative corrections. We therefore should tune the parameters
in the action so that these errors vanish, which is left for future works. Also, we are going to extend
the formulation so that the improved action produces off-shell amplitudes thatare consistent with
the Ginsparg-Wilson relation.

This work is supported in part by the Grant-in-Aid of the Ministry of Education (No. 21674002).
Numerical simulations are performed on IBM System Blue Gene Solution at HighEnergy Accel-
erator Research Organization (KEK) under a support of its Large Scale Simulation Program (No.
09-05).
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Figure 4: Effective speed of light calculated with the improved and unimproved overlap fermion actions.
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