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Set β r1/a au0masq
0l au0masq

0s L/a T/a Ncon f ×Nt

1 6.572 2.152(5) 0.0097 0.0484 16 48 624×2
2 6.586 2.138(4) 0.0194 0.0484 16 48 628×2

3 6.760 2.647(3) 0.005 0.05 24 64 507×2
4 6.760 2.618(3) 0.01 0.05 20 64 589×2

5 7.090 3.699(3) 0.0062 0.031 28 96 530×4

Table 1: Ensembles (sets) of MILC configurations used with gauge coupling β , sizeL3
×T and sea masses

(× tadpole parameter,u0) masq
0l andmasq

0s . Column 3 is the lattice spacing values in units ofr1 after ‘smooth-
ing’ [4]. Column 8 gives the number of configurations and timesources per configuration that we used for
calculating correlators. On set 5 only half the number were used for light quarks.

1. Introduction

TheB meson sector is a compelling target for lattice calculations for a variety of reasons. There
are a variety of so-called “gold-plated” states — those states which are narrow and hadronically
stable, as well as being experimentally accessible. In calculating these properties of states on the
lattice there are no free parameters;mπ , mK , mηc andmϒ calibrate the masses of the light, strange,
charm and bottom quarks respectively, andϒ splittings and other meson masses calibrate the lattice
spacing[1, 2, 3].

PrecisionB meson spectroscopy is a key ingredient in precision calculation of decay constants
and form factors, ingredients in CKM matrix element determination and testing ofthe standard
model.

2. Simulation Methods

We use five different ensembles of gauge configurations with 2+1 flavors of dynamical ASQ-
TAD sea quarks, generated by the MILC collaboration. The ensembles, listed in Table 1, represent
three lattice spacings, labeled very-coarse, coarse, and fine.

On each configuration we generate and store random-wall HISQ propagators for several source
time slices for light, strange and charm quarks:

gHISQ(x, t0) = M−1
x,x′η(t0)x′ , (2.1)

whereη(t0)x′ is a three-component complex unit vector of random numbers at each site ofthe
source timeslice,t0 and zero elsewhere.

The HISQ action uses an additional application of the fattening step of the ASQTAD formu-
lation, reducing discretization errors to the extent that it is possible to simulate relativistic charm
quarks on configurations of modest lattice spacing.

Bottom quarks are too massive to simulate relativistically on these lattices. However within
bound states, theb quark is generally slow enough (vb/c ∼ 0.01 in Bc) to treat non-relativistically.
The use of the NRQCD action for b quarks is a well-developed procedure. [5, 6, 7]
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We evolve the NRQCD propagator recursively:

Gi(x, t +1) =

(

1−
δH
2

)(

1−
H0

2n

)n

U†
t (x)

(

1−
H0

2n

)n (

1−
δH
2

)

Gi(x, t), (2.2)

with

δH = −c1
(∆(2))2

8(M0)3 + c2
ig

8(M0)3(∆̃ · Ẽ − Ẽ · ∆̃)− c3
ig

8(M0)3 σ · (∆̃× Ẽ − Ẽ × ∆̃)

−c4
g

2M0 σ · B̃+ c5
a2∆(4)

24M0 − c6
a(∆(2))2

16n(M0)2 . (2.3)

The tilde expressions̃E and B̃ are improved versions of the naive lattice chromo-electric and
chromo-magnetic fields,E andB. We use the tree-level values ofci = 1 for the constants.

To double statistics, we evolve the NRQCD propagator both forward and backward across the
lattice from the source timeslice.

As we have used a random-wall source for the HISQ propagators, it is critical that we initialize
the NRQCDb propagators with thesame random-wall functionη(t0)x′ as we used for the HISQ
propagators. This is slightly non-trivial in that the HISQ staggered fermions, and the random
wall vector η(t0)x′ , have one Dirac component per site, while the NRQCDb quarks have two
upper and/or two lower Dirac components. The trick is to undo the staggeringtransformation by
multiplying the noise sourceη(t0)x′ at each site with the four-component staggering operator:

Ω(x) = γx0
0 γx1

1 γx2
2 γx3

3 . (2.4)

Furthermore, to isolate the meson ground-state, we smear theb propagator source with a
Gaussian smearing function of varying radiiri. Therefore, on timeslicet0 we initialize the NRQCD
propagator as:

GNRQCD
i (x, t0) = ∑

x′
S(

∣

∣x− x′
∣

∣ ;ri)ηx′(t0)Ω(x′)Γ, (2.5)

whereΓ is an element of the Dirac algebra chosen to project out a desired meson state.
At the sink end we must also multiplyΩ(x) back into the HISQ propagator so that we can get

a multi-Dirac-component object to trace with the NRQCDb propagator:

GHISQ(x, t)ab = gHISQ(x, t0)xΩ(x, t)ab (2.6)

Then ourB meson correlator matrix is:

CΓ(t − t0)i j = ∑
x

GHISQ†
(x, t)ΓS(

∣

∣x− x′
∣

∣ ;r j)G
NRQCD
i (x′, t). (2.7)

3. Analysis

We extractB meson energies from the matrix of correlators (2.7) using a Bayesian factorizing
fit to the form

CΓ(t − t0)i j =
Nexp

∑
k=1

ai,ka∗j,ke−Ek(t−t0) +
Nexp−1

∑
k′=1

bi,k′b
∗

j,k′(−1)(t−t0)e−E ′

k′
(t−t0), (3.1)
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where the second term fits the oscillating component inherent in staggered meson correlators.
We look for high-confidence fits stable with respect to varyingNexp, andtmin of the fit range.

Where possible we simultaneously fit all the correlators coming from the same ensemble, to better
account for correlated errors.

In practice we fitB (light) andBs together in all cases except the fine ensemble (set 5). We fit a
3×3 matrix of smeared correlators in all cases except for theBc fits on the very-coarse ensembles
(sets 1 and 2). We always fit the pseudoscalar and vector states simultaneously.

We are interested in the ground-state energiesE0 and the ground-state of the oscillating parity-
partner channelE ′

0. A factor of γ0γ5 relates the spin structureΓ of the direct channel with that of
the parity partner channel,Γ′. In this way a measured pseudoscalar correlator also contains a scalar
meson correlator, and a vector correlator also contains an axial vector correlator at no extra cost.

Because the relativistic relation between energy and mass does not hold for NRQCDb quarks,
there is an unknown energy shift between the physical masses we are interested in and the the fitted
energies. Instead we measure the splitting between the state of interest and asimilar state with the
same NRQCD quark content.

We convert this splitting to physical units usingr1 = 0.3133(23)fm [1], giving a 0.7% uncer-
tainty in any measured splitting in our lattice calculation. Hence we can minimize the scale-setting
error by choosing comparison states as close as possible to the state of interest. We are perfectly
free to construct a fictitious comparison state which is a composite of real states, provided all
components have well-known experimental and lattice measurement for calibration.

We consider three methods to determine theBs andBc masses:

MBs/c
=

(

EBs/c
−

1
2

Ebb

)

latt
+

1
2

Mbb (I)

MBc =

(

EBc −
1
2
(Ebb +Ecc)

)

latt
+

1
2

(

Mbb +Mcc
)

(II)

MBc = (EBc − (EBs +EDs −Eηs))latt +(MBs +MDs −Mηs) (III)

HereEbb, for example, refers to the spin-averaged lattice energy ofbb states. In each equation
we must apply the lattice scalea−1 (and its uncertainty) to the expression in the()latt only.

Where the subtraction compares states with different electromagnetic charge structures we
must estimate the adjustment necessary to account for electromagnetic effects.

4. Results and discussion

4.1 Pseudoscalar states

In practice Method I is the only one applicable toBs spectroscopy. We extract the lattice
energies of theBs states from each of the ensembles, convert to physical masses via expression I.

After the recent, more precise determination ofr1 [1], it has become apparent that both thes
quark mass and theb quark mass were tuned too high. Method I forMBs is particularly sensitive
to the mistuned quarks. We have estimated the effect of the mistuned quark masses by substituting
into Method I mesons with different valence masses. We estimate that for the very coarse, coarse
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Figure 1: Lattice calculations forMBs (left) MBc (right) and with energy shift subtracted and resulting
masses extrapolated ina2 to the physical point. ForMBs we correct the finite-a2 points forb ands mass
mistuning before extrapolation. ForMBc the continuum points are corrected upwards for electromagnetic
effects by 4.5MeV and 1MeV for Methods I and II respectively.Error bars on extrapolated points reflect
total errors.

and fine ensembles, the too-large strange mass pushes upMBs by 7.5, 10 and 9MeV, respectively.
The b mistunings biasMBs up by 10.5, 13, and 15MeV on the same ensembles. We correct for
these biases in the finitea calculations, and then extrapolate, estimating an additional systematic
uncertainty of 10MeV on the extrapolated value, giving:

MBs = 5.341(4)(10)GeV, (4.1)

with the first error being statistical and the second, dominant, error being the quark-tuning system-
atic error. Figure 1 (left) illustrates the extrapolation.

For Bc pseudoscalars we can use Methods II and III. As II is superior to I and they are not
linearly independent we do not also consider I here. We again extrapolate in a2 to the continuum
for each.

We correct for the electromagnetic structure mismatch. Method II compares neutralbb andcc
states with the chargedBc state. We calculate that this mismatch causes an underestimate ofMBc by
∼ 4.5±2MeV. In Method III, comparing similarly chargedBc andDs introduces an underestimate
of ∼ 1±1MeV.

After correcting the electromagnetic contribution we get:

MBc(II) = 6.279(2)(1)(5)(2)GeV (4.2)

MBc(III) = 6.268(4)(6)(1)(1)GeV, (4.3)

where the errors are (statistical)(r1)(NRQCD)(EM). The agreement between the two independent
subtraction methods is a strong test of our control of systematics. Becausethe ()latt term is very
small, both are quite insensitive tob ands tuning, and no further subtraction is necessary. Results
from both methods are in excellent agreement with the PDG average of 6.277(6) GeV[8]. See
Figure 1, right.

The HISQc quark seems to be the source of the strong discretization effects in Method II,
which go asαs(v/c)2(amc)

2. Thec quark is more relativistic inside theBc than in acc, so these
errors do not cancel exactly, but should vanish in the continuum.
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Figure 2: The extrapolation of the ratioR to the continuum for bothB∗
c andB∗.

4.2 Vector states

For theB∗ states there is an obvious method of correcting for the NRQCD energy shift—
compare to the nearbyB pseudoscalar states to get the hyperfine splitting. The remaining compli-
cation is that since theσ ·B term in the NRQCD action generates theB∗

−B splittings, radiative
corrections to this term could generate a multiplicative correction to the splitting. (Recall we have
used the tree-levelc4.) We therefore use the hyperfine splitting of theBs system as calibration for
that of theBc system and calculate:

Rc =
EB∗

c
−EBc

EB∗
s
−EBs

, (4.4)

which will cancel all of the NRQCD energy shifts, multiplicative corrections,and scale-setting er-
ror. We extrapolate toa2 = 0, multiply by the PDG average value ofMB∗

s
−MBs = 46.1(1.5)MeV [8],

and add the experimentalBc mass, giving us aprediction of theB∗

c mass ofMB∗
c
= 6.330(7)(2)(6)

GeV. As a check we also calculateRl with light quarkB andB∗ states. A complete discussion of
theBc hyperfine splitting calculation can be found in [9].

4.3 Scalar states

As mentioned in Section 3, the oscillating component of the pseudoscalar correlators gives us
the scalar states.

We extract theE0+ −E0− splittings directly in the simultaneous fits. Converting to physical
units we again extrapolate ina2 to the continuum and find:

∆MBs(0
+
−0−) = 0.41(2)GeV (4.5)

∆MBc(0
+
−0−) = 0.44(7)GeV, (4.6)

quoting statistical errors only. As this splitting is generated by the kinetic term, it should acquire
no multiplicative renormalization, and most systematics should cancel. TheO+ Bc state lies about
400MeV below theB+D threshold so it should be a narrow state. It is less clear whether the 0+ Bs

state is below theB+K state, but in any case it should be close enough to theB+K that it should
also be a narrow state. See Figure 3, right and left, respectively.
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Figure 3: The splitting between the scalar and pseudoscalar states for Bs (left) andBc (right). Values are
extrapolated to the continuum. Shown on each are the relevant hadronic thresholds.

5. Conclusions

We have shown preliminary results of precise lattice calculations of pseudoscalar masses in the
Bs andBc system, and of vector-pseudoscalar and scalar-pseudoscalar splittings. Our calculation
of MBs andMBc agree within errors with experimental measurements of these states. Some work
remains to fully understand the systematic errors and biases related to mistuningof quark masses.

Our calculations of theBs andBc scalars and theB∗

c vector constitutepredictions of the masses
of these states before experimental measurement.

The precision and accuracy of these results reaffirms that the combinationof HISQ light quarks
and NRQCDb quarks is a powerful lattice technique. Further work will complete the exploration
of the lowestB,Bs andBc states, and then apply these techniques to the calculation of form-factors
and decay constants relevant to weak-matrix elements.
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