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diagram is performed on 2+1 flavor, domain wall fermion gauge configurations generated using
the Iwasaki gauge action with β = 2.13, a 163× 32 volume with Ls = 16 and a−1 = 1.73GeV .
Using the same light quark propagators and additional strange quark propagators, we study the
η and η ′ mesons, where disconnected diagrams also make an important contribution. Our π −
π calculation shows a good exponentially decaying signal from the disconnected graph, which
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can be accurately computed. We are able to resolve the η and η ′ states and see the pattern of
SU(3) flavor symmetry breaking found in Nature.
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1. Introduction

Disconnected diagrams play a very important role in many lattice QCD calculations, such as
the calculation of η , η ′, and σ masses, the isospin 0 π − π scattering length, ε ′ from K to ππ

∆I = 1/2 process, etc.. Since the correlation functions corresponding to these diagrams reflect the
quantum fluctuations of QCD vacuum, the noise does not exponentially decrease with increasing
time separation between source and sink. Thus, the signal present in these correlation functions
(which behaves like exp(−me f f t) for large time separations) is quickly buried in the noise and it is
very difficult to get useful information from large time separation. Therefore, a good understanding
of the disconnected diagrams requires a full dynamical calculation and large statistics. Several
attempts related to these calculation have been done for the η ′ in the case of SU(2) [1, 2, 3] and
the σ [4, 5]. It would be more interesting to calculate the physical η and η ′ masses in the flavor
symmetry broken SU(3) case where ms > ml .

The π−π scattering length calculation per se, is very important to expand our understanding
of the strong interaction on lattice QCD. It also represents a first step toward a more interesting
calculation of the direct CP violation measure ε ′ which is believed to be a quantity that may call for
new physics. While much work has been dedicated to the I = 2 channel of π−π scattering [6, 7],
few lattice QCD calculations have been done for the I = 0 case, possibly because the disconnected
diagram makes the problem much harder than I = 2. Y. Kuramashi et. al. studied the isospin 0
channel π −π scattering [8] almost two decades ago, but he ignored the disconnect diagram and
also used the quenched approximation. In this paper, we calculate all the diagrams, especially
providing a close look at the disconnect diagram. We will get a rough idea about how large the
disconnected diagram’s contribution is.

2. Details of Lattice Calculation

Our calculation is a full unitary calculation and is based on the RBC/UKQCD 163 × 32,
Ls = 16, 2+1 flavor domain wall fermion, β = 2.13 Iwasaki gauge action lattices. The inverse
lattice spacing for these lattices is determined to 1.73(3)GeV [9]. We have three ensembles of
such configurations with light sea quark mass ml=0.01, 0.02, 0.03 respectively. They all have the
same strange sea quark mass ms = 0.04. The ensembles with ml = 0.01 and 0.02 each has 150
configurations, and the ml = 0.03 ensemble has 281 configurations.

We use a wall source and a wall sink for the propagator. The calculation of the correlation
function for the disconnected diagrams naturally requires us to calculate the propagators on the
time slices of both source and sink, so we decide to calculate the propagators on all time slices,
which requires the calculation of 32 separate propagators in our case. By doing so, the statistics
are greatly improved since we can put the source at all possible time slices. In a sense, we extract
all possible information from a given configuration. Finally, we exploit the need to compute many
propagators on each configuration by using Ran Zhou’s eigenvector accelerator code, speeding up
the computation of the propagators by 60 percent.

3. The η and η ′ masses

Using approximate SU(3) flavor symmetry, we expect that we can create the η with the octet
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operator O8, and the η ′ with the singlet operator O1,

η ≈ O8 =
1√
6
(ūγ5u+ d̄γ5d−2s̄γ5s) (3.1)

η
′ ≈ O1 =

1√
3
(ūγ5u+ d̄γ5d + s̄γ5s) (3.2)

We will try to demonstrate this is true from lattice QCD calculation. For future convenience, we
define a light operator and a strange operator,

Ol =
1√
2
(ūγ5u+ d̄γ5d) (3.3)

Os = s̄γ5s (3.4)

and consider the correlation function matrix of these two operators,

C(t) =

(
〈Ol(t)O

†
l (0)〉 〈Os(t)O†

l (0)〉
〈Ol(t)O†

s (0)〉 〈Os(t)O†
s (0)〉

)
=

(
Cl−2Dl −

√
2Dx

−
√

2Dx Cs−Ds

)
(3.5)

where Cl , Cs, Dl , Ds, and Dx stand for all the five possible contractions which are shown in Figure 1.
Then by diagonalizing the matrix C−1(t0)C(t) with a reference time t0 = 1, we expect to get the
correlation function for η & η ′ states, while the rotation matrix that diagonalizes this matrix gives
the mixing angle for the light and the strange parts,

η = cosθη ·Ol− sinθη ·Os (3.6)

η
′ = sinθη ′ ·Ol + cosθη ′ ·Os (3.7)

In the SU(3) flavor symmetry limit, sinθη ,η ′ =
√

2
3 = 0.8165, cosθη ,η ′ =

√
1
3 = 0.5774.

The effective mass plateau of η and η ′ for ml = 0.01 ensemble are shown in Figure 2. Using
the range 3 ≤ t ≤ 7 where there are good plateaus, we get mη = 0.397(17) = 687(29)MeV , and
mη ′ = 0.654(80) = 1.13(14)GeV . Figure 3(a) shows the mixing angle calculated by diagonalizing
the correlation matrix. The data points with small time separation where we have good signal for
the η ′ agree with the SU(3) symmetry limit. This demonstrates that the η is created by the octet
operator and the η ′ by the singlet operator, approximately. This ability of a full QCD calculation
to reproduce the anomaly dominated SU(3) symmetry breaking pattern of the physical η and η ′ is
an important test of lattice QCD.

Since the SU(3) flavor symmetry is approximately true, using Eqn. 3.1 and Eqn. 3.2, we can
calculate η and η ′ correlation function directly from the O8 and O1 operator,

〈η(t)η†(0)〉 =
1
3
(Cl +2Cs)−

2
3
(Dl +Ds−2Dx) (3.8)

〈η ′(t)η ′†(0)〉 =
1
3
(2Cl +Cs)−

1
3
(4Dl +Ds +4Dx) (3.9)

this gives mη = 0.392(12) = 678(20)MeV , mη ′ = 0.671(82) = 1.16(14)GeV , and they agree with
the results of correlation matrix diagonalization method.

Our result for the η mass is consistent with Gell-Mann-Okubo formula, which states that
3m2

η +m2
π = 4m2

k , and gives mη = 0.3855(25)= 667(4)MeV , where we have used mπ = 0.2472(10)=
427.7MeV and mk = 0.3560(20) = 615.9MeV .
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Figure 1: The left panel shows all five diagrams that contribute to the η and η ′ correlation functions. They
are Cl , Cs, Dl , Ds, and Dx respectively from the top left to bottom right. The solid line with an arrow stands
for a propagator, and the black solid circle stands for a γ5 insertion. The right panel shows our result for
these diagrams for the ml = 0.01 ensemble.
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Figure 2: Left panel: effective mass plateau for the η and the mass obtained using the fitting range [5:14].
Right panel: effective mass plateau for the η ′ and the mass obtained using the fitting range [3:7].

For the η ′ mass, since we can only get a reasonable signal from short time separation where
the excited states may exist, our result may not be fully reliable. Figure 3(b) shows mη ′ calculated
for ml = 0.01 and 0.02 ensembles. By assuming a linear relationship between mη ′ and mπ2 , it
seems our result does agree with the experiment physical η ′ mass.

4. Two-Pion Scattering

The diagrams that need to be calculated in order to study π −π scattering in both I = 2 and
I = 0 channels are shown in the left panel of Figure 4, identified as the Direct(D), Cross(C), Rect-
angular(R), and Vacuum(V) diagrams. The right panel shows the actual data for these four con-
tractions for the ml = 0.01 ensemble. We can see that diagram D makes the biggest contribution,
then diagram C and R, and diagram V makes the smallest contribution. It is extremely noisy for the
disconnected diagram(V), but still we can get a clear signal up to time separation 6. By increasing
the statistics, or reducing the pion mass(making the I = 0 signal fall less rapidly), we could obtain
a better result for the V diagram.
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Figure 3: (a). The Mixing angle, which determines the two eigenvectors of the matrix C−1(t0)C(t). The two
horizontal lines give the value of cos(θ) and sin(θ) in the SU(3) flavor symmetry limit. (b). The η ′ mass
from the ml = 0.01 and ml = 0.02 ensembles. The physical mass 957MeV is also labeled on the figure.

1014

1015

1016

1017

1018

 0  2  4  6  8  10  12  14  16

C
or

r(
t)

t

D
C
R
V

Figure 4: The left panel shows the Direct(D), Cross(C), Rectangular(R), and Vacuum(V) diagrams from the
left top to right bottom. The right panel shows our result for these diagrams for the ml = 0.01 ensemble.

The π−π correlation function for I = 2 and I = 0 can be expressed in terms of these diagrams,

< I2(t)|I2(0) > = 2(D−C) (4.1)

< I0(t)|I0(0) > = 2D+C−6R+3V (4.2)

We can get the energy of I = 2 and I = 0 π−π state from the plateau of the effective mass plot, and
the results are shown in Table 1. Since the disconnected diagram makes only a small contribution
to the correlation function of I = 0 scattering state but contributes very big noise, leaving it out
makes the numerical result more precise but in trade with an unknown systematic error, and it is
listed as ∆E(I = 0 Vout) in the table.

To get the scattering length, we use Lüscher formula [10, 11], which relates the energy of the
two particle states with the scattering length,

∆E = E−2mπ =− 4πa0

mπL3 [1+ c1
a0

L
+ c2(

a0

L
)2)]+O(1/L6) (4.3)
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Table 1: The energy difference between the π − π isospin eigenstates and 2mπ . The last column shows
∆E(I = 0) when we leave the disconnected diagram out. The numbers in the bracket [] give the fitting range.

ml(con f ) mπ/[5 : 14] ∆E(I = 2)/[5 : 14] ∆E(I = 0)/[5 : 8] ∆E(I = 0 Vout)/[5:12]
0.01(150) 0.2472(10) 0.0197(14) -0.041(80) -0.0439(72)
0.02(150) 0.3248(9) 0.0158(7) -0.086(79) -0.0268(69)
0.03(281) 0.3895(6) 0.0135(5) 0.04(10) -0.0155(50)

Table 2: The π−π scattering lengths for the I = 2 and I = 0 channels. The data in the bracket [] shows the
minimum and maximum value corresponding to one standard deviation. The last column shows the result
for I = 0 scattering length when the disconnected diagram is omitted.

mπ a0(I = 2) a0(I = 0) a0(I = 0 Vout)
0.2472(10) -1.26(7) 4.6 [-2.1:8.1] 4.9 [4.2:5.4]
0.3248(9) -1.31(5) 7.9 [0.86:10.1] 4.1 [3.0:4.9]
0.3895(6) -1.34(5) -2.9 [-6.0:7.3] 2.8 [1.7:3.8]

where c1=-2.8373, c2=6.3752. The calculated scattering lengths are shown in Table 2 and Figure 5.
Let us compare our result with theory preditions. The tree level χPT formula for the π −π

scattering length is

a0(I = 2) =− 1
16π

2m2
π

f 2
π

,a0(I = 0) =
1

16π

7m2
π

f 2
π

(4.4)

which we evaluate using the results for fπ and mπ obtained in Ref [12],

fπ = 0.0765+1.02(ml +0.00308),m2
π = 2×2.285(ml +0.00308) (4.5)

The χPT results are shown in Figure 5 as the solid line, in comparison with our lattice QCD
results. Notice that the tree level formula agrees well with the experiment and our results for the
I = 2 scattering length, while giving a value for I = 0 around 30 percent smaller compared to
experiment(see Figure 1 in Ref [13]).

5. Conclusion

We have preformed a unitary, full lattice QCD calculation of the η and η ′ mass, and the isospin
0 π −π scattering length where the disconnected graph plays an important role. The η mass we
obtain is in a good agreement with chiral pertubation theory. We still have large errors for the η ′

mass, and the full I = 0 π − π scattering length has such a big error that the result serves only
as a bound on the magnitude . A clear signal can only be seen for small time separation in the
disconnected diagram of π−π scattering.

In the future, increasing the statistics alone could improve our results to some extent. Reducing
the vacuum noise by doing the calculation on a larger volume or making the pion mass smaller
could greatly improve the signal to noise ratio of the vacuum diagram. As more powerful computers
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Figure 5: The π−π scattering length for I = 2 and I = 0. The solid line gives the tree level prediction.

are under construction, we will make the calculation of the disconnected diagram more precise, and
hope to attack the ε ′ problem.
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