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1. Introduction

Lattice QCD calculations of observables related to the structure of baryonsare becoming in-
creasingly relevant since direct connection to experiment can now be made. This is due to the fact
that systematic uncertainties caused by a finite volume, a finite lattice cut-off andunphysically high
pion masses are becoming better controlled. Nowadays a number of major collaborations are pro-
ducing results on nucleon form factors and the first moments of parton distributions closer to the
physical regime both in terms of the pion mass and the lattice spacing [1, 2, 3, 4,5]. Generalized
parton distributions (GPDs) encode important information related to baryon structure and can be
studied in a systematic way. While experiments are able to measure convolutions of GPDs, lattice
QCD allows us to extract generalized form factors of operators like

Oµ1...µn
Va = ψ̄ D{µ1 · · ·Dµn−1γµn}

τa

2
ψ , Oµ1...µn

Aa = ψ̄ D{µ1 · · ·Dµn−1γµn}γ5 τa

2
ψ , (1.1)

from which GPDs can be reconstructed via inverse Mellin transforms. Thespecial case ofn = 0,
for which eq. (1.1) reduces to the vector and axial current with the associated Dirac, Pauli and axial
form factors, is treated separately and results are outlined in ref. [6]. In this work we concentrate on
then= 1 case for which the nucleon matrix elements can be decomposed in terms of the generalized
form factorsA20(q2), B20(q2), C20(q2) andÃ20(q2), B̃20(q2), as follows,

〈N(pf ,sf )|O
µν
V |N(pi ,si)〉 = ῡ(pf ,sf )

[

A20γ{µqν} +B20
iσ{µαqαqν}

2m
+C20

1
m

q{µqν}
]

υ(pi ,si) ,

(1.2)

〈N(pf ,sf )|O
µν
A |N(pi ,si)〉 = ῡ(pf ,sf )

[

Ã20γ{µqν}γ5 + B̃20
q{µqν}

2m
γ5

]

υ(pi ,si) . (1.3)

Hereq = pf − pi is the momentum transfer,υ is a Dirac spinor and the brackets{·} stand for
symmetrization over all uncontracted indices and subtraction of the traces.

2. Extraction of the generalized form factors

We work with two degenerate dynamical flavors of twisted mass Wilson fermionsand with a
tree level improved Symanzik gauge action. For simulation details the reader is referred to ref. [7].

Methods developed for the extraction of ordinary nucleon form factors[4] carry over almost
unaltered to the present case. We calculate the following two- and three point functions

G(~q, t) = ∑
~xf

e−i~xf ·~q Γ0
βα 〈Jα(t f ,~xf )Jβ (0)〉 , (2.1)

Gµν(Γρ ,~q, t) = ∑
~x,~xf

ei~x·~q Γρ
βα 〈Jα(t f ,~xf )Oµν(t,~x)Jβ (0)〉 , (2.2)

and form the ratios

Rµν(Γ,~q, t) =
Gµν(Γ,~q, t)

G(~0, t f )

√

G(~q, t f − t)G(~0, t)G(~0, t f )

G(~0, t f − t)G(~q, t)G(~q, t f )
. (2.3)
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Like in the preceding calculations of masses and form factors, the proton interpolating fieldJ(x) =

εabc
[

ua⊤(x)C γ5db(x)
]

uc(x), is constructed from smeared quark fields (here and lateru andd de-
note the quark fields in the physical basis). Gaussian smearing of the fermions and APE smear-
ing of gauge-fields entering the smearing function are employed with the parameters tuned as in
ref. [8]. The sequential inversion “through the sink” technique that weuse here forces us to fix the
source-sink separationt f − ti = 12a, the smearing parameters and the matrixΓ at the beginning of
the calculation. The advantage is that any local or non-local bilinear operator carrying an arbitrary
lattice momentum can be inserted without the requirement of further inversions. In fact the four
choicesΓ0 = 1/4[1+ γ0], Γk = iΓ0γ5γk are identical to those used in the calculation of Sachs and
axial form factors. For sufficiently large separationst f − t andt − ti the ratio of eq. 2.3 exhibits
a plateau and we denote the fitted plateau value byΠµν(Γ,~q). From renormalized plateau values
ΠR = Z Π the generalized form factors can be extracted. All values of~q resulting in the same
q2, the four choices ofΓ and the ten orientationsµν of the operator lead to an over-constrained
system of equations which is solved in the least-squares sense via a singular value decomposition
of the coefficient matrix. The coefficients follow from the matrix-element decomposition given in
eq. (1.2) and may depend on the energy and mass of the nucleon as well ason the initial spatial
momentum~pi = −~q. It turns out that both the operators withµ = ν andµ 6= ν are necessary to
obtain all three vector form factors. Since those two classes of operators on a hypercubic lattice
renormalize differently from each other [9], renormalization has to be carried out already on the
level of the ratios. Fig. 1 shows some of the plateaus we observe in the ratios.
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Figure 1: Ratios for the one derivative vector (left) and axial (right) operator for a few exemplary choices of
the momentum. The solid lines with the bands indicate the fitted plateau values with their jackknife errors.

3. Non-perturbative renormalization

The operators defined in eq. (1.1) require renormalization. We compute the necessary renor-
malization constants in the RI’-MOM scheme at different renormalization scales non-perturbatively
and use perturbation theory to translate them to the popularMS-scheme at 2 GeV. A similar proce-
dure has been employed by the authors of ref. [10]. In addition, we subtract perturbatively to one
loop theO(a2) contributions as described below. For the present calculation we will needthe one
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derivative vector operator withµ = ν (ZVD1), the one derivative vector operator withµ 6= ν (ZVD2)
and the one derivative axial operator withµ 6= ν (ZAD2).

The operators can all be written in the form

O = ∑
z′

ū(z)J (z,z′)d(z′) , (3.1)

whereJ determines the operator, e.g.J (z,z′) = δz,z′γµ would correspond to the local vector
current. For each operator we define a bare vertex function (12×12 matrix) given by

G(p) =
a12

V ∑
x,y,z,z′

e−ip(x−y)〈u(x)ū(z)J (z,z′)d(z′)d̄(y)〉 , (3.2)

wherep is a momentum allowed by the boundary conditions, and the gauge average is performed
over gauge-fixed configurations. We fix to Landau gauge using a stochastic over-relaxation algo-
rithm [11]. In this work, we do not address questions related to the Gribovambiguity.

The propagator in momentum space is defined by

Su(p) =
a8

V ∑
x,y

e−ip(x−y) 〈u(x)ū(y)〉 , Sd(p) =
a8

V ∑
x,y

e−ip(x−y) 〈d(x)d̄(y)
〉

, (3.3)

and an amputated vertex function is given by

Γ(p) = (Su(p))−1G(p)(Sd(p))−1 . (3.4)

The corresponding renormalized quantities are

SR(p) = ZqS(p) , ΓR(p) = Z−1
q ZOΓ(p) , (3.5)

with Z-factors determined by the renormalization conditions of the RI’-MOM scheme

1
12

tr[S−1
R (p)S(0)(p)]

∣

∣

∣

p2=µ2
= 1 and

1
12

tr[ΓR(p)Γ(0)−1(p)]
∣

∣

∣

p2=µ2
= 1,

whereµ is the renormalization scale andS(0) andΓ(0) are tree level expressions forSandΓ. These
are imposed in the massless theory, i.e. at critical mass and vanishing twisted mass. We evaluate
eq. (3.2) and eq. (3.3) for each momentum separately employing Fourier sources. Alternatively one
could exploit translation invariance to shift the operator position in eq. (3.2)to positionz= 0 in each
term. This would allow for an evaluation of the vertex function with all possible momenta at the
cost of one set of inversions per configuration, but would lead to larger statistical errors. This sec-
ond method has been carried out for local bilinears [12] and one of the 1-derivative operators [13]
on the same configurations, leading to compatible results.

Chiral extrapolations are necessary to obtain the renormalization factors inthe chiral limit. As
can be seen in Fig. 2 for six different renormalization scales, the pion massdependence is very mild
and a linear extrapolation suffices. We use a 1-loop expression [10] to convert our results to the
MS-scheme and a 2-loop formula [10, 14] to evolve the renormalization scale down to µ = 2GeV.
If a “renormalization window” exists whereΛ2

QCD << µ2 << 1/a2 holds, we expect a plateau. In
reality the upper inequality is not satisfied and we see pronounced lattice artifacts in our results.
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Figure 2: Chiral extrapolations of the Z-factors for six different renormalization scales.

Fortunately recent perturbative calculations [15] allow us to subtract theperturbativeO(a2) lattice
artifacts to one loop, which alleviates the problem. To remove the remainingO(g4a2p2) artifacts
we extrapolate linearly toa2p2 = 0. The statistical errors are negligible compared to the systematic
ones. The whole procedure is demonstrated in Fig. 3. Our preliminary results for theZ-factors in
theMS-scheme at 2GeV are

ZDV1 = 1.17(2) , ZDV2 = 1.15(9) , ZDA2 = 1.19(1) . (3.6)

The error is the systematic error due to the extrapolation, namely the difference between using all
points or just the higher four ones. Statistical errors are at least one order of magnitude smaller.

4. Results

In Fig. 4 we show our results for the renormalized generalized form factors of the one deriva-
tive vector operator. Qualitative features, like the ordering ofA20, B20 andC20 or the momentum
dependence are in agreement with the results of ref. [1]. Quantitatively however our results are
larger and closer to those obtained by the QCDSF collaboration [3]. Since both us and the QCDSF
collaboration use a non-perturbative renormalization this perhaps may be attributed to the different
renormalization procedures (perturbative versus non-perturbative). Our values for〈x〉u−d = A20(0)

are compatible with results by several other groups and, at the currently available pion masses,
deviate from the phenomenological value〈x〉 ≈ 0.16. In fig. 5 we summarize our results for the
axial one derivative operator.

Extending the present calculation to the other available twisted mass fermion ensembles will
be crucial to understand the considerable deviations from experiment that are currently observed in
all lattice calculations of〈x〉 and〈∆x〉.
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Figure 3: Renormalization factors in the RI’-MOM scheme at renormalization scaleµ (circles). Results
translated to theMS-scheme at renormalization scale 2GeV (filled squares) and results with perturbatively
subtracted one loopO(a2) artifacts (diamonds). The lines show extrapolations toa2p2 = 0 using all (solid)
or just the last four points (dashed). The filled triangle isZA from ref. [12].
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Figure 4: The figure shows our results for the generalized form factorsA20, B20 andC20 calculated at
different pion masses. The solid lines are dipole fits included here to guide the eye.
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Figure 5: The figure shows the generalized form factorsÃ20 andB̃20 calculated at different pion masses.
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