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1. Introduction

The proton and the neutron are the fundamental building blocks of our world. They form
heavier nuclei and thus the basis for atoms and are the only known source of stable baryonic mat-
ter. Their structure can be studied by scattering leptons off nuclei and the most basic observables
obtained from these processes are the nucleon form factors. The electromagnetic form factors are
Lorentz-scalars which parametrize the matrix element of the electromagnetic current between two
nucleon states at different momentum:

〈p′|q̄γ µq|p〉 = 〈〈γ µ〉〉F1(Q2)+
i

2mN
〈〈σ µα〉〉∆α F2(Q2) , (1.1)

where 〈〈X 〉 ≡ ū(p′)X u(p) and Q2 ≡−∆2 = −(p′− p)2. mN refers to the nucleon mass and the
quarks q always refer to the isovector combination u− d, i.e. proton minus neutron currents. In
this case, contributions from disconnected diagrams cancel due to isospin symmetry. A different
parametrization called the Sachs form factors, GE(Q2) and GM(Q2), is often used in the literature.
We will discuss those in our upcoming paper [1].

In a similar way, the axial current can be parametrized in terms of two form factors. For the
isovector current, i.e. the proton minus the neutron combination, they are called the axial form
factor, GA(Q2), and the pseudoscalar form factor, GP(Q2):

〈p′|q̄γ5γ µq|p〉 = 〈〈γ µ γ5〉〉GAQ2 +
1

2mN
∆µ〈〈γ5〉〉GP(Q2) . (1.2)

The current work is based on mixed action calculations using two flavors of dynamical asqtad sea
quarks [2] and domain wall valence quarks. In previous years, we have reported on several other
nucleon structure observables using this technology, see e.g. [3, 4, 5, 6]. We have studied form
factors on full DWF lattices in Ref. [7] which also includes comparison to the work reported here.
For a concise review of key results, we refer to Ref. [8]. For recent results from other groups,
cf. Ref. [9], and for recent reviews of the field Ref. [10, 11].

The current report focuses on selected results of nucleon form factors and uses several tech-
nological updates. The final report using these improvements will be published soon [1] and will
include several other major observables like generalized parton distributions and structure func-
tions.

2. Lattice technology

As in our previous studies we employ the asqtad action for the sea quarks and the domain
wall (DWF) action for the valence quarks. In addition, we also add one lighter mass to our data
set. The tuning of the quarks masses and the choice of parameters have been discussed in Ref. [3].
The lattice spacing for all data sets corresponds to a = 0.12406 fm with an uncertainty of 2%,
cf. Ref. [12]. This yields a physical volume V = (2.5 fm)3 on the 203 and V = (3.5 fm)3 on the 283

lattices. The resulting physical values of the nucleon and pion masses are needed for our calculation
and have been determined previously in Ref. [4]. Table 1 lists these numbers.

In previous publications we often computed propagators by chopping each lattice in two halves
and performing propagator calculations independently on both halves, cf. Ref. [3] and references
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Light mAsqtad
sea Volume (am)π (am)N mπ / MeV mN / MeV

0.007 203 ×64 0.1842(7) 0.696(7) 292.99(111) 1107.1(111)
0.010 283 ×64 0.2238(5) 0.726(5) 355.98(80) 1154.8(80)
0.010 203 ×64 0.2238(5) 0.726(5) 355.98(80) 1154.8(80)
0.020 203 ×64 0.3113(4) 0.810(5) 495.15(64) 1288.4(80)
0.030 203 ×64 0.3752(5) 0.878(5) 596.79(80) 1396.5(80)

Table 1: Physical pion and nucleon masses.

therein. In the present work we adopted a different technology and compute multiple source/sink
pairs on a single gauge field. We find this approach both more convenient and more powerful,
resulting in a superior statistical quality of our results. By choosing eight different source/sink
pairs on a single gauge field, we managed to reduce our error bars by a factor of two. We also
took possible sources of correlations into account by performing fits using the error correlation
matrix among all data points on each ensemble, see e.g. [6], and the “super jackknife” technique,
Refs. [13, 14], for combining data from different ensembles in a single fit.

3. Form factor results

We discuss several results of our calculation of nucleon form factors. To study the shape of
the nucleon at large distances — which is a property that can be studied well by lattice calculations
— we perform an expansion of the form factors at small Q2, yielding the mean square radii, 〈r2

i 〉,
as the slope, where i denotes either 1, 2, or A, corresponding to the form factor F1, F2, or GA,
respectively. Phenomenologically, the Dirac radius 〈r2

1〉 can be determined from fits to the form
factor F1(Q2) [15] or from an analysis based on dispersion theory [16, 17, 18]. These two methods
currently yield inconsistent results. For F2(Q2) there is a systematic discrepancy between spin-
transfer and Rosenbluth experiments, the source is generally believed to be two-photon exchange
processes, see Ref. [19] and references therein. A precise quantitative analysis still needs to be
done. Lattice calculations allow for a study without two-photon contamination and thus can be
very useful in resolving this discrepancy.

We have studied the form factors F1(Q2) and F2(Q2) using dipole and tripole fits and also
fit our lattice data to the simultaneous expansion in Q2 and mπ obtained from the small-scale
expansion (SSE), see Refs. [20, 21] for the explicit form of these expressions. The advantage
of the simultaneous expansion is that we do not make model-dependent assumptions on the Q2

dependence of the form factors, at variance with the use of dipole or tripole phenomenological
formulae. The disadvantage is that the validity of the expansion will only hold for small values
of Q2 and we have only few data points in that region. Thus, relying on the SSE expansion may
increase the uncertainty, both statistical and systematic (which accounts for the unknown magnitude
of higher order contributions). Since it is not feasible to determine all the low-energy constants
involved in the chiral expressions by fitting to our lattice results, we fix some of them using their
phenomenological values.

We find that applying the cuts Q2 < 0.5 GeV2 and mπ < 400 MeV yields an acceptable fit
with χ2/dof= 1.86 with two fit parameters. We could still describe the functional dependence well
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for larger Q2, but the functional dependence on mπ is not too flat in our lattice data compared to
the chiral expansion. Despite this observation, we believe that the apparent agreement between the
lattice data and the SSE form for Q2 > 0.5 GeV2 is merely accidental since we have no reason
to believe that the SSE at the order given is valid for that range of squared momentum transfer.
Figure 1 summarizes our results. The left panel shows the isovector form factor F1(Q2) lattice data
with the best fit SSE at mπ = 292.99 MeV. The right panel shows the resulting chiral extrapolation
of the Dirac radii as a function of the pion mass, mπ . For illustration purposes, we have also
included the Dirac radii obtained from dipole fits in the graph. However, these data points have
no influence on the curve presented and simply compare the two fit methodologies. The red star
shows the empirical value taken from Ref. [15].
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Figure 1: Isovector form factor F1(Q2) lattice data with best fit SSE at mπ = 292.99 MeV (left panel) and
the resulting isovector Dirac radii, 〈r2

q〉 (right panel).

The corresponding fit for the isovector F2(Q2) had a worse quality of χ2/dof= 1.31 with four
fit parameters when applying the cuts Q2 < 0.3 GeV2 and mπ < 400 MeV. However, we noticed
that the Q2 dependence of the SSE expression was in worse agreement than in the case of F1(Q2),
while the mπ dependence was better. The resulting Pauli radii and anomalous magnetic moments
are shown in Fig. 2. The left panel shows the Pauli radius 〈r2

2〉, while the right panel shows the
anomalous magnetic moment, κv. Again, data points from tripole fits are included in the plot, but
have no influence on the fit. We find that 〈r2

2〉 is described well by the fit and the fit even gets close
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Figure 2: Isovector Pauli radius 〈r2
2〉 (left panel) and anomalous magnetic moment κv (right panel) as a

function of the pion mass.

to the experimental point. The magnetic moment κv underestimates the experiment. We find these
fits encouraging, but believe that the excellent agreement with experiment is accidental for 〈r2

2〉.
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Data with smaller pion mass is needed to verify this finding since κv does not yet agree, although
it originates from the same data set.

Similar to our fit strategy for the vector form factors, we also adopt a simultaneous fit to the
Q2 and mπ -dependence of the axial form factor, GA(Q2). Figure 3 shows the result of the chiral fit
together with the dipole fit and the data set for the 283 lattice at mπ = 355.98 MeV with a fitting
range of Q2 < 0.4 GeV2 for the SSE expansion and all Q2 values for the dipole fit. The SSE fit
gives a χ2/dof= 1.73. The resulting axial radius, however, is 〈r2

A〉 = 0.1560(60) fm2 for the cuts
Q2 < 0.4 GeV2 and mπ < 400 MeV, substantially underestimating the experimental value from
Ref. [22]. Future lattice calculations at smaller pion masses will be crucial to resolve this issue.
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Figure 3: Comparison of dipole and chiral fit to GA(Q2) for the 283 lattice at mπ = 355.98 MeV.

The induced pseudoscalar form factor, GP(Q2), is not described by a dipole type fit formula.
Instead, it is commonly fit using a pion-pole expression, giving excellent agreement with the data,
cf. Ref. [22]. We performed two kinds of fits: First, we repeated the analysis done previously with
the other form factors, i.e. performing a combined fit in Q2 and mπ . Second, we took the pion-pole
form as a function of Q2 and fit it using a single ensemble with fixed mπ , treating the pion mass as
a free parameter.

In the first case, we again find that kinematic cuts of Q2 < 0.5 GeV2 and mπ < 400 MeV yields
reasonable results. In the second case, we find the location of the pion pole, mπ = 417(43) MeV,
with an uncertainty of 10% within the actual value of mπ = 355.98 MeV on the 283 lattice. The
resulting χ2/dof= 0.94 indicates an excellent fit to the data. Figure 4 shows a comparison of the
two fits. It is evident that both fits manage to describe the data well, but the uncertainty of the curve
with mπ as a free parameter is larger. We conclude that the isovector GP(Q2) is described well by
the pion-pole form

4. Summary and Outlook

We have computed the isovector form factors of the vector and the axial current for the nucleon
within our framework of mixed action calculations. We have applied new analysis techniques that
result in substantially reduced error bars at minimal additional computational cost. Furthermore,
due to the agreement between the lattice results reported in this proceeding and the corresponding
one reported in [8] obtained using full DWF, we are confident that the hybrid calculations employed
do not suffer from systematic effects.
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Figure 4: Comparison of pion-pole fits to isovector GP(Q2) on the 283 lattice with fixed pion pole and with
the pion pole as a free parameter.

We find that a combination of chiral fits and lattice data is possible with the current generation
of lattice calculations. This way, we obtain qualitative agreement with many features we expect to
hold when approaching the chiral limit. We expect that the upcoming generation of lattice calcu-
lations will provide conclusive quantitative results from first principles that will be in agreement
with experiment without resorting to assumptions on functional behavior outside of what can be
predicted by chiral perturbation theory. We are able to provide fits to the vector form factors,
F1(Q2) and F2(Q2). While we have no explanation for the discrepancy of the axial radius, 〈r2

A〉, we
find that induced pseudoscalar form factor is described well by the pion-pole form.
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