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1. Introduction

The study of QCD at non-zero baryon density by numerical simulations on aspace-time lattice
is plagued by the well-known sign problem: the fermion determinant is complex and the Monte
Carlo sampling becomes unfeasible. One of the possibilities to circumvent this problem is to
perform Monte Carlo numerical simulations for imaginary values of the baryon chemical potential,
where the fermion determinant is real and the sign problem is absent, and to infer the behavior at
real chemical potential by analytic continuation. The idea of formulating a theory at imaginaryµ
was first suggested in Ref. [1], while the effectiveness of the method ofanalytic continuation was
pushed forward in Ref. [2]. Since then, the method has been extensively applied to QCD [3 – 10]
and tested in QCD-like theories free of the sign problem [11 – 16] and in spinmodels [17, 18]. The
state-of-the-art is the following:

- the method is well-founded and works fine within the limitations posed by the presence of
non-analyticities and by the periodicity of the theory with imaginary chemical potential [19];

- the analytic continuation of physical observables is improved if ratios of polynomials (or Padé
approximants [20]) are used as interpolating functions at imaginary chemical potential [13, 14];

- the analytic continuation of the (pseudo-)critical line on the temperature – chemical poten-
tial plane is well-justified, but a careful test in two-color QCD [14] has cast some doubts on its
reliability.

In particular, the numerical analysis in two-color QCD of Ref. [14] has shown that, while there
is no doubt that an analytic function exists which interpolates numerical data for the pseudo-critical
couplings for both imaginary and realµ acrossµ = 0, determining this function by an interpolation
of data at imaginaryµ could be misleading. Indeed, in the case of polynomial interpolations, there
is a clear indication in two-color QCD that non-linear terms inµ2 play a relevant role at realµ, but
are less visible at imaginaryµ, thus calling for an accurate knowledge of the critical line there and,
consequently, for very precise numerical data. The above describedscenario could well be peculiar
to two-color QCD and strongly depend on the choice of parameters of Ref.[14]. Therefore, in
this work we perform a systematic study of the analytic continuation of the critical line in another
sign-free theory, SU(3) with a non-zero density of isospin. The dependence on the fermion mass
in two-color QCD is considered in a separate contribution [21]. The aim of this study is to single
out some general features of the analytic continuation of the critical line andto understand if and
to what extent they can apply also to the physically relevant case of QCD.

2. Analytic continuation of the critical line in three-color QCD at finite isospin
chemical potential

Three-color QCD with a finite density of isospin charge [22] is a theory in which the chemical
potential isµ for half of the fermion species and−µ for the other half. The partition function,
which is even inµ and depends only onµ2, can be written as follows:

Z(T,µ) =
∫

DUe−SG detM[µ]detM[−µ] , (2.1)

where the integration is over gauge link variables,SG is the pure gauge action andM the fermion
matrix (we adopt a standard staggered discretization). This leads to a realand positive measure,
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Figure 1: (Left) Distribution of the real part of the Polyakov loop in SU(3) with finite isospin density on a
83×4 lattice witham=0.1 atµ2/(πT)2=0.16 and for threeβ values around the transition. (Right) Critical
couplings obtained in SU(3) with finite isospin density on a 83 × 4 lattice with am=0.1, together with a
polynomial fit of orderµ6 to all data.

because of the property detM[−µ] = (detM[µ])∗, and therefore to a theory free of the sign problem.
This theory is obviously closer to real QCD than two-color QCD, being yet unphysical, since it
implies a zero baryon density, while in Nature a non-zero isospin density is always accompanied
by a non-zero baryon density; moreover the isospin charge is not a conserved number in the real
world. Nevertheless, for our purposes this theory is very convenientsince it provides us with
another theoretical laboratory for the method of analytic continuation.

Similarly to SU(2) with finite baryon density, at imaginary values of the chemical potentialµ
the theory exhibits RW-like transition lines, the first RW sector being given bythe strip−(0.5)2 .

µ2/(πT)2≤ 0 (we refer to Ref. [23] for a detailed discussion of the QCD phase diagram in presence
of an imaginary isospin chemical potential).

In our numerical analysis, we consider finite isospin SU(3) withNf = 8 degenerate staggered
fermions of massam= 0.1 on a 83 × 4 lattice. The critical line in the temperature – chemical
potential plane is a line of (strong) first order transitions, over all the investigated range ofµ2

values,−0.2304≤ µ2/(πT)2 ≤ 0.2025. This is one of the reasons for working on a small volume
(tunneling between the different phases would have been sampled with muchmore difficulty on
a larger volume) and clearly emerges from the distribution on the thermal equilibrium ensemble
of the values of observables like the (real part of) the Polyakov loop, the chiral condensate, the
plaquette across the transition (see, for example, Fig. 1(left)). Typical statistics have been around
10K trajectories of 1 MD unit for each run, growing up to 100K trajectoriesfor 2-3 β values
aroundβc(µ2), for eachµ2, in order to correctly sample the critical behavior at the transition. The
critical β (µ2) is determined as the point where the two peaks have equal height and, in allthe cases
considered, this point turned out to be the same for all the adopted observables.

2.1 Results for the critical line at finite isospin

The general strategy is the following: after determining, for a set ofµ2 values, the critical
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Figure 2: (Left) Critical couplings obtained in SU(3) with finite isospin density on a 83 × 4 lattice with
am=0.1, together with a polynomial fit of orderµ6 to data withµ2 ≤ 0. (Right) The same with a polynomial
of orderµ6 with constrained quadratic term.

couplingsβc(µ2), the critical line is guessed by interpolating the values ofβc(µ2) for µ2 ≤ 0 only.
The validity of the interpolation is evaluated by comparing its analytic continuation tothe region
µ2 > 0 with the direct determinations of the critical coupling in this region1.

We observe from the very beginning that data forβc(µ2) for both µ2 ≤ 0 andµ2 > 0 can
be globally fitted by an analytic function (a polynomial of third order inµ2/(πT)2 nicely works).
Fig. 1(right) shows how the fit compares with data. The question is if there are interpolations of the
critical couplings atµ2 ≤ 0 only, that, when continued toµ2 > 0, agree with the critical couplings
directly determined in the latter region.

We have tried several kind of interpolations of the critical couplings atµ2 ≤ 0. At first, we
have considered interpolations with polynomials up to orderµ10. We can see that data atµ2 ≤ 0 are
precise enough to be sensitive to terms beyond the orderµ2; indeed, a goodχ2/d.o.f. is not achieved
before including terms up to the orderµ6, in agreement with the outcome of the global fit discussed
above. The extrapolation toµ2 > 0 for the polynomial of orderµ6 is shown in Fig. 2(left); it agrees
with direct determinations ofβc(µ2), within the 95% CL band.

Then, we have considered interpolations with ratios of polynomials of orderup to µ6. In all
but one cases we got good fits to the data atµ2 ≤ 0, but only two extrapolations toµ2 > 0 compare
well with numerical data in that region: the ratio of a 4th to 6th order polynomial and the ratio of
a 6th to 4th order polynomial [23]. It is interesting to observe that the two interpolations which
“work” have in common the number of parameters.

Both kinds of fits considered so far have evidenced that the role of terms of order larger than
µ2 cannot be neglected. Since the data more sensitive to these terms are those farther fromµ2 = 0,
while data closer toµ2 = 0 should “feel” only theµ2 term in a polynomial interpolation, we per-
formed a fit with a polynomial of the forma0+a1µ2/(πT)2 in a small regionµ2 . 0 and fixed the
value of the parametera1 (see Ref. [23] for details). Then, we kepta1 fixed and repeated the fit

1We refer to Ref. [23] for all the determinations of the critical couplings in the finite isospin SU(3) theory on a
83×4 lattice with fermion massam=0.1 and for the parameters of all the fits presented below.
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Figure 3: Values ofβc(µ2) in SU(3) with finite isospin density on a 83×4 lattice witham=0.1, together
with the fit to data withµ2 ≤ 0 according to the fit functions (2.3)(left) and (2.4)(right).

on all available data atµ2 ≤ 0 with a polynomial of the forma0 + a1µ2/(πT)2 + a2µ4/(πT)4 +

a3µ6/(πT)6. The resulting interpolation and its extrapolation to the regionµ2 > 0 are shown in
Fig. 2(right). The comparison with critical couplings atµ2 > 0 is good and the 95% CL band is nar-
rower than in the unconstrainedµ6-polynomial fit (see Fig. 2(right)), meaning that this procedure
leads to increased predictivity for the method of analytic continuation.

At last, we have attempted the fit strategy to write the interpolating function inphysical units
and to deduce from it the functional dependence ofβc on µ2, after establishing a suitable corre-
spondence between physical and lattice units. The natural, dimensionless variables of our theory
areT/Tc(0), whereTc(0) is the critical temperature at zero chemical potential, andµ/(πT). The
question that we want to answer is if fitting directly the dependence ofT/Tc(0) on µ/(πT) may
lead to increased predictivity for analytic continuation. We shall name this kindof fits as “physical”
fits. While µ/(πT) is one of the dimensionless variables used in our simulations,T/Tc(0) is not
and must be deduced from the relationT = 1/(Nta(β )), whereNt is the number of lattice sites in
the temporal direction anda(β ) is the lattice spacing at a givenβ 2. Since our determinations for
βc range between≃ 4.5585 and≃ 4.842, it can make sense to use fora(β ) the perturbative 2-loop
expression withNc = 3 andNf = 8.

We have tried several different fitting functions and report two cases which work particularly
well. The first is given by the following 3-parameter function:

[

Tc(µ)

Tc(0)

]2

=
1+Bµ2/(πTc(µ))2

1+Aµ4/(πTc(µ))4 (2.2)

2Strictly speaking the lattice spacing depends also on the bare quark mass, which in our runs slightly changes as
we changeβ since we fixam. However in the following evaluation, which is only based on the perturbative 2-loop
β -function, we shall neglect such dependence.
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leading to the following implicit relation betweenβc andµ2:

a(βc(µ2))2

∣

∣

∣

∣

2−loop
= a(βc(0))2

∣

∣

∣

∣

2−loop

1+Aµ4/(πTc(µ))4

1+Bµ2/(πTc(µ))2 . (2.3)

In Fig. 3(left) we compare to data the fit with the function (2.3): one can see that the extrapolation
to the regionµ2 > 0 behaves very well. The values of the fit parameters areβc(0) = 4.6977(13),
A = −3.25(26) andB = −2.62(12), with χ2/d.o.f.=1.33.

As an alternative function for the shape of the critical line, we have tried also the following

Tc(µ)

Tc(0)
=

{

A+(1−A)
[

cos
( µ

T

)]B
, µ2 ≤ 0

A+(1−A)
[

cosh
( µ

T

)]B
, µ2 > 0 ,

(2.4)

which explicitly encodes the expected periodicity of the partition function for imaginaryµ. The fit
to data at imaginaryµ is very good and its extrapolation to the real chemical potential side compares
impressively well with data (see Fig. 3)(right). The resulting fit parametersareβc(0) = 4.6969(12),
A = 1.508(15) andB = 0.560(32), with χ2/d.o.f.=0.39. This function is a good candidate to pa-
rameterize the critical line for small values ofµ/T.

In both cases, Eq. (2.3) and Eq.(2.4), the “physical” fit worked very well and with a reduced
number of parameters with respect to our previous fits, leading to increased predictivity and con-
sistency with data at real chemical potentials. One can easily check that the adopted functions are
not appropriate for a continuation of the critical line down to theT = 0 axis, but this is not the aim
of our study, since such extrapolation would be questionable anyway.

3. Conclusions

In this work we have presented results concerning the analytic continuationof the critical line
in QCD with a finite density of isospin charge. We have detected some featuresand developed
some strategies, which could apply and be useful for real QCD at finite baryon density. Let us
briefly summarize them.

- Non-linear terms in the dependence of the pseudocritical couplingβc onµ2 in general cannot
be neglected. A polynomial of orderµ6 seems to be sufficient in all explored cases.

- The coefficients of the linear and non-linear terms inµ2 in a Taylor expansion ofβc(µ2)

are all negative. That often implies subtle cancellations of non-linear terms at imaginary chemical
potentials (µ2 < 0) in the region available for analytic continuation (first RW sector). The detection
of such terms, from simulations atµ2 < 0 only, may be difficult and requires an extremely high
accuracy. As a matter of fact, the simple use of a sixth order polynomial to fit data at imaginaryµ
leads to poor predictivity, which is slightly improved if ratio of polynomials are used instead.

- An increased predictivity is achieved if the linear term inµ2 is fixed from data at small values
of µ2 only.

- We have proposed a new, alternative ansatz to parameterize the critical line directly in phys-
ical units in theT,µ plane (instead than in theβ ,µ plane) and given two explicit realizations. This
“physical” ansatz provides a very good description of the critical line, moreover with a reduced
number of parameters, and leads to an increased predictivity, comparableto that achieved by the
“constrained” fit.
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