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1. Introduction

The existence of singular points at which the partition fiorc(2°) vanishes is expected in
a complex parameter plane. These are called Lee-Yang zeresteer zeros [1]. The scaling
analysis of such singularities in the complex parameteamnepla an interesting approach to under-
stand the nature of phase transitions. A few years ago, #rentidynamic singularities of QCD
in the complex chemical potentigli;) plane were discussed by M. Stephanov using universality
arguments in the vicinity of the critical point and a randoratrix model [2]. It is interesting to
perform numerical simulations of lattice QCD and to compheeresults with the predictions from
the universality arguments.

Moreover, the study of the singularities in the complex pleimportant to estimate the radius
of convergence of a Taylor expansion in termgugf The Taylor expansion method [3] is widely
used for the study of the equation of state at finite The expansion coefficients of pressure
are defined byp(T, g)/T* =1In2/(VT3) = Shca(T)(Ug/T)", whereV is spatial volume and
T is temperature. Becauseis an analytic function ofiq for finite volume,c, does not change
even wherug is a complex number. Hence, the convergence radius is detirby the nearest
singularity frompg = 0 in the complexq plane.

In this report, we study the thermodynamic singularitieQ@D by a simulation with rela-
tively heavy quark mass. Although simulations near theattimit are required for the study of
universality class in [2], it is important to study the dilstition of the singularities in the complex
Hq plane as a first step toward the universality argument andrfastimation of the convergence
radius even if the quark mass is not very small. In Sec. 2, weuds a method to investigate the
singularities at complexiq and point out problems in this method. The properties of Yaeg
zeros are also discussed, introducing the probabilityibigton function of complex phase of the
Boltzmann weight. In Sec. 3, we estimate the distributiorthef singular points using the data
obtained by a simulation of two-flavor QCD with p4-improveedggered quarks afi;/m, ~ 0.7
on a 16 x 4 lattice in [3], and discuss the convergence radius. Ceiuhs are given in Sec. 4.

2. Singularitiesand complex phase of quark determinant with complex L

The grand partition function at a complex chemical poténtig= pre+itim iS given by

Z(B(T), Hre+ i tim) = /@u (detM (tre+ i tim)) ¥ €S, 2.1)
To find the singularities in the complex plane, we define a mdired partition function,
| 2B, kretitim)| |/ [ detM(tretitim)\™
Znorm(Bs Ure+ iHim) = #(B,0) = detM(0) . , (2.2)
yHg=

where(--->(l37uq:0) means the expectation value jat = 0, andf3 = 6/g?. BecauseZ’(B,0) is

always nonzero for finite volume, the positionf(8, 1i4) = 0 can be found by calculatingnorm.

Since 2 vanishes due to the complex phase ofMet.e. 8 = Nrim(IndetM(pg)), we introduce
the complex phase distribution functigv(8). The partition function is then written by

Zrorm( B, Hre+ iHiim) = ‘ / éewwm‘- (2.3)
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Identifying 8 + 2nmtwith 8, Z,om Vanishes when the contributions frafnand 6 + 11 cancel each
other. Using the distribution function, we point out tha fthasef contains two components: one
is related to the total quark number and produces charstiteproperties of Lee-Yang zeros, and
the other is irrelevant to Lee-Yang zeros and causes thepsigrlem at largeq.

We discuss the complex phase in the vicinity of the gggdxis. The phase is given by

(2.4)

- dindetM
O(Ure+ itim) = N¢ [ Im(IndetM(Lre)) + Re<J> Him
Hg=HRe

d(Ha/T) T

Because? is real and positive for realy, the uim-independent term does not contributeZo= 0
for finite V. However, because of statistical fluctuations in thg-independent part 06, %
may be smaller than the statistical error eveuat= 0. We plot the histogram of the complex
phase in Fig. 1 (left). The phase is calculated by a Tayloaregin of IndeM up toO(ug’) using
data in a simulation with p4-improved staggered quarks [Bje result ofy,/T = 0 is given
by the ujm-independent part only. The magnitude #fdecreases exponentially Age increases,
i.e. Z ~ exp—(6%)/2] with (62) ~ O(u3,) for tim = 0 [4]. Once 2 becomes smaller than the
statistical error at largglg, Znorm Vanishes at random. Suc¥om = 0 are irrelevant to Lee-Yang
zeros, but one cannot distinguish such fake zeros from res.drhis is a kind of the sign problem.

Another interesting point is that the operatifin detM(1g))/d(Hg/T) in the second term of
Eq. (2.4) corresponds to the quark numbd) on each configuration. Therefore, the distribution
of the complex phase is related to the distribution of the'kjnamber at the leading order gf,,.
Let us consider a canonical ensemble with fikédThe canonical partition functio®:(T,N) for
eachN is related to the grand partition functia# (T, 1g) through a fugacity expansion,

Z(Tpg) = ¥ 2N =y W(T.N)E® = [VW(T.Vp)ePinTdp,  (25)

wherep is the quark number density. In the casg@t= Lre+iLim, the complex phase i (T, L)
is @ = Nuim/T = pVuim/T, sinceZc(T,N) is real and positiveW (T, N) is the distribution func-
tion of the total quark numbew (T,N) = 2¢(T,N)eNHre/T,

The um-independent part in thig is eliminated if the canonical partition function is obtagh
by a partial path integral with fixe. Once the problem of the unnecessary part of the phase is
solved, one can discuss the order of phase transitions fioltbe/ing way.

We find from Eq. (2.5) that” as a function ofV i, /T) is obtained through a Fourier trans-
formation ofW with respect tq. In the case of a normal point gk or a crossover pseudo-critical
point, where the distribution is expected to be of Gaussiaslfficiently large/, Z does not van-
ish except in the limit o¥/ uym /T — £ because the function which is obtained through a Fourier
transformation of a Gaussian function again is a Gaussiattittn. Therefore, the complex; at
which 2 = 0 does not go to the real axis in the infinite volume limit.

On the other hand, at a first order phase transition point,pfiases having a different quark
number coexist. In this case, we expect V4T,V p) has two peaks having the same peak height at
the transition point. Performing the Fourier transformatof such a double peaked function leads
to a function which has zeros periodically. For example,sarihution functionW(T,Vp) having
two Gaussian peaks pi andp, leads to2” which has zeros gty /T = (2n+ 1) 11/[V (p2 — p1)],



Sngularities of QCD in the complex chemical potential plane Shinji Ejiri

B=3.52 360 365 3.80 4.00
: 3 : : : : TIT =0.76 0.90 _ 1.00 136 1.98
600k W/ T= Mo /T=1 ] T T T T T T ““
/ \ 0.25 |
400} i & H
< A\ 1
200 ‘ I HHH { 2 c‘ M
|
0 41‘ HJ H litce, ‘ / ) ‘\
-10 50 60 . 082 084 086 088 009 0.94
““““““““““““““ 6 " :
HedT=2 J
— \
A, 4
o’ | |
% | |
>2 NE!
|
20 0 20 40 60 80 100 120 140 160 067 08 082 08a ose 088 09 092 0.94

Figure 1. Left: The histograms of complex pha8dor complexpq/T = pre/T +ipim/T atB = 3.65. The
dashed curves are Gaussian functions. Right: The plaghistegramw(P, 3) and the effective potential
Vert(P, 8,0) at tg = 0 for eachB.

with n=0,1,2,3,---. The Lee-Yang zeros approach the real axis/aé. Trherefore, the study of
1/V scaling of the Lee-Yang zero is equivalent to finding the dieyteak structure at a first order
phase transition. The same discussion for SU(3) pure géiegey is given in [5].

3. Grand canonical partition function by a density of state method

As noted above, the numerical study in terms of the singidarof 2 = 0 has a potential
danger for largely. However, the position of” = 0 can be estimated from the distribution function
of the complex phase, sinc& vanishes when the distribution function has two peaks oeraod
the contributions from these peaks cancel each other. drsthily, we investigate the distribution
function of the complex phase instead 8f. Once the quark number is fixed, the distribution
function is related to the canonical partition function,discussed in [6] for reaj;. However,
fixing the quark number is not essential for eliminating ti@ groblem, and the calculation of
Zc(T,N) is not easy actually. We rather use a density of state metlitbdfixing the plaquette
variable and apply an approximation proposed in [4] to atleésign problem.

We introduce a probability distribution function of the glaette, which is defined by

W(P, B, lg) = m/% 3(P' — P) (detM)N g&BNsiteP (3.1)

whered(x) is the delta function. For later discussions, we define tiezame plaquett® asP =
—S/(6BNsie) and the quark matrisv as independent gB. Nsite is the number of sites. The
plaquette distribution functions fquy = 0 are shown in Fig. 1 (right) for eacB. We denote
w(P, B) =W(P,3,0). The normalized partition function is rewritten as

Z (B, Uq
Z(B,

Here,R(P, L) is the rewelghtlng factor for finitglg defined by

/ (detM (piq))™
R(P ) = 17U (P —P)(deM (i) (3P ~P) G317 ) 0 53
1Hg) = [2U &(P — P)(detM(0))N (6(P" = P))(8,us=0) ' '

/wppuq ) dP = /RPuq w(P,B) dP. (3.2)
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This R(P, i) is independent of3, and R(P, 1) can be measured at afy; In this method, all
simulations are performed at; = 0 and the effect of finitg, is introduced though the operator
detM (L) / detM (0) measured on the configurations generated by the simulaiigrs= 0.

Because QCD has time-reflection symmetry, the partitiootfan is invariant under a change
from pig to — g, i.e. R(P, —g) = R(P, Lig). Moreover, the quark determinant satisfiesMét- L) =
(detM(ig))*. From these equations, we get

[R(P. lg)]" = R(P, lig)- (3.4)

This indicates thaR(P, Liq) is real in the case of reglg, i.e. Hg = Hgz. Then, the probability
distribution of the plaquette given BP, g)W(P, B) is real. However, once the imaginary part of
Hq becomes nonzer®(P, Lig) is not a real number any more. We thus write the partition iong

-1
DT [ eoru R ilwiP.p) dp = [ oI RP ) wiPp) (55 ) do. (25)
Because this complex phagevanishes ajy, = 0, ¢ does not have thgin-independent part, and
the problem of the statistical error due to thag-independent part is eliminated. As we discussed
in the previous section, [R(P, tig)|w(P, 8)(d¢@/dP) 1 becomes a double-peaked functiongdnd
the distance between these peaks is equéProet+ 1) 1T with an integem, the partition function
becomes zero, i.e. a Lee-Yang zero appears. To investidedther the probability distribution has
double-peak or not, we introduce an effective potentialngefiby

Ver(9.B.be) = ~In |RIP(@). )| - mwPlo). )+ (52)  (Plolbe)  (36)

Here, we normalize the value dfp/dP by the maximum value for eagly. This effective potential
is a function ofP in practice. We defin®est (P, B, Ug) = Vert(@(P), B, Hg)-

Performing Monte-Carlo simulations, we calculate thesedlyuantities|R(P, q)|, @(P, tq)
andw(P,8). However, the exact calculation of the quark determinawiiffscult except on small
lattices. In this study, we estimate the quark determinamhfthe data of Taylor expansion coeffi-
cients up toO(ug’) aroundpg = 0 obtained by a simulation of two-flavor QCD with p4-improved
staggered quarks in [3]. The truncation error has been skgclin [4]. Because we defieby
the Taylor expansion of Indbt, 6 is not restricted to the range fromrto .

Next, we discuss the sign problem in the calculatioWgf We denote the quark determinant
asNtIn[detM(ug)/ detM(0)] = F +i6. Histograms off are shown in Fig. 1 (left). We fitted the
histograms to Gaussian functions. The results are the dashees. The distributions seem to be
well-approximated by Gaussian functions. Here, we perfarnmulant expansion,

(exp(F +18)) = (") exp i(6) — %((A6)2> - %((AG)?’) +i(AFAB) — %(AF (86)%) +---|(3.7)

with AX = X — (X). If the distribution of6 is of Gaussian, th@©(6") terms vanish fon > 2 in
this equation [4]. Moreover, sind® ~ O(Ly) andF ~ O(ué), this expansion can be regarded as
a power expansion ipg. If the expansion of Eq. (3.7) is good, we can extract the @Hastor
€ from R easily and the sign problem |R| is eliminated. We deal with the first two terms, i.e.
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Figure 2. The derivative of the effective potentiaVes/dP at B = 3.65 for (um/T)? = 0.0 (left),
(Ure/T)? — (tim/T)? = 1.0 (middle) and 4 (right). We measured them at the peaks of the plaquette
histograms in Fig. 1 (right) and interpolated the data byl@cspline method.

i(8) and—((AB)?)/2, assuming the Gaussian distribution. The correlatiamsesetweerr andé
are also neglected as a first step. Because we calculatepbetation value with fixe® and the
values ofF andP are strongly correlated, thll&= may be small onc® is fixed. Thengp ~ (8).

The results of the first derivative 8 (P, B, lq) are shown in Fig. 2 for variougy/T with
(thim/T)? = 0 (left) and with R&(1g/T)?] = (Ure/T)? — (tim/T)? = 1 (middle) and 4 (right).
B = 3.65 is adopted for these results. We disatlés;/dP instead ole¢ itself because?Vqs /dP2
is independent 0. dVes/dP at differentf3 can be estimated by the equation,

dVeff
dpP

dVeff

(PaB) = ﬁ(PaBO) - G(B - BO)NSitEa (3-8)

under the parameter change fr@imto 3. This equation is derived from the equatiav(P,3) =
eBB—Po)NsPyy(P, By), which is given from the definition, Eq. (3.1). Therefore, tbem of dVe/dP

as a function o does not change witf up to aB-dependent constant. Using the behaviors of
dVesr/dP, the value ofP minimizing Ve, i.e. dVes/dP = 0, can be also controlled k.

If the effective potentiaVes is a double-well function ofp, dVer/d@ is an S-shaped func-
tion and vanishes three times. In such a case, there exigtgianrof P where the derivative
of dVesr/dP = (dVesr/d@)(d@/dP) is negative, since is a monotonically increasing function of
P. The left panel of Fig. 2 shows that the regiond3¥e/dP?> < O appears at high density, i.e.
(Ure/T)? > 6 for um/T = 0. Also, in the region of larg@im /T, dVerr/dP becomes an S-shaped
function, which is shown in the middle and right panels of.Ridor (ure/T)? = 1 and 4.

Next, we investigate the boundary at whid¥i¢ /dP changes to an S-shaped function from a
monotonic function, which is shown as a line in Fig. 3 (le@n this line,d*Ves/dP? = 0 at a value
of P. The constant part aVe /dP is changed by8. The values of at which bothd?Ve/dP? and
dVesr/dP vanish simultaneously are indicated in this figure. Above lihe (large Inﬁug) or large
Re(ug)) with this 3, the double-well potential appears, and the phase caimmelatcurs near this
line. The temperatures corresponding to these valugsase shown above the curveswfP, 3)
in Fig. 1 (right). This result suggests the existence of dagties (Lee-Yang zeros) in the region
of large In(ug) as well as the region of large Reé), and the boundary at large (r;nﬁ) is closer
to tg = O than that at large Rﬂé). The distance to the boundary fromg = 0 is shown in Fig. 3
(right) for eachf. The blue circles are the distance to the line in the complargpand the red
square is that on the real axis. The boundary on the real agissentially the same as the critical
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Figure 3. Left: Boundary wherd&/s changes to double-well type in the compl(e,ug/T)2 plane. Below
this line, Vet is always of single-well. The numbers in this figure are thiies of 8 at which dVes/dP
andd?Verr/dP? vanish simultaneously. Right: The distance to the bounttary (4 = 0 for eachB. This
corresponds to the radius of convergence. The red symba isesults on the real axis.

point in [4]. This distance to the boundary is approximatadyal to the convergence radius of an
expansion of I’/ (VT3) = 5, an(g/T)?".

4. Conclusions

We studied the singularities of QCD in the complexplane by a numerical simulation. Be-
cause the sign problem makes the calculation of the partftioction difficult, we discussed a
probability distribution function of a complex phase iraeof the partition function itself. In this
calculation, we used a kind of reweighting method togethih the approximation in [4]: the
guark determinant is estimated by a Taylor expansion, aadstwussian distribution of the com-
plex phase of dé¥l is assumed. We found that there is a region where the phasiutisn has
two peaks, suggesting the existence of singularities,amegion of large Irﬁué) as well as of large
Re(ug). We moreover estimated the distance to the nearest siitgutam Ly = 0 in terms ofug
for each temperature. The distance is regarded as the gemoer radius of a Taylor expansion of
the thermodynamic potential. Although our simulation isf@ened with relatively heavy quark
mass, the result suggests that convergence radius at tperatore of the real QCD critical point
(Tep) may be longer than the convergence radius in the crossayienratT > Tp.
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