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1. Introduction

The existence of singular points at which the partition function (Z ) vanishes is expected in
a complex parameter plane. These are called Lee-Yang zeros or Fisher zeros [1]. The scaling
analysis of such singularities in the complex parameter plane is an interesting approach to under-
stand the nature of phase transitions. A few years ago, the thermodynamic singularities of QCD
in the complex chemical potential(µq) plane were discussed by M. Stephanov using universality
arguments in the vicinity of the critical point and a random matrix model [2]. It is interesting to
perform numerical simulations of lattice QCD and to comparethe results with the predictions from
the universality arguments.

Moreover, the study of the singularities in the complex plane is important to estimate the radius
of convergence of a Taylor expansion in terms ofµq. The Taylor expansion method [3] is widely
used for the study of the equation of state at finiteµq. The expansion coefficients of pressure
are defined byp(T;µq)=T 4 = lnZ =(V T 3) � ∑n cn(T )(µq=T )n, whereV is spatial volume and
T is temperature. Becausep is an analytic function ofµq for finite volume,cn does not change
even whenµq is a complex number. Hence, the convergence radius is determined by the nearest
singularity fromµq = 0 in the complexµq plane.

In this report, we study the thermodynamic singularities ofQCD by a simulation with rela-
tively heavy quark mass. Although simulations near the chiral limit are required for the study of
universality class in [2], it is important to study the distribution of the singularities in the complex
µq plane as a first step toward the universality argument and foran estimation of the convergence
radius even if the quark mass is not very small. In Sec. 2, we discuss a method to investigate the
singularities at complexµq and point out problems in this method. The properties of Lee-Yang
zeros are also discussed, introducing the probability distribution function of complex phase of the
Boltzmann weight. In Sec. 3, we estimate the distribution ofthe singular points using the data
obtained by a simulation of two-flavor QCD with p4-improved staggered quarks ofmπ=mρ � 0:7
on a 163�4 lattice in [3], and discuss the convergence radius. Conclusions are given in Sec. 4.

2. Singularities and complex phase of quark determinant with complex µq

The grand partition function at a complex chemical potential µq � µRe+ iµIm is given byZ (β (T );µRe+ iµIm) = Z DU (detM(µRe+ iµIm))Nf e�Sg : (2.1)

To find the singularities in the complex plane, we define a normalized partition function,Znorm(β ;µRe+ iµIm)� ����Z (β ;µRe+ iµIm)Z (β ;0) ����= ������*�detM(µRe+ iµIm)
detM(0) �Nf

+(β ;µq=0)������ ; (2.2)

whereh� � �i(β ;µq=0) means the expectation value atµq = 0, andβ = 6=g2. BecauseZ (β ;0) is
always nonzero for finite volume, the position ofZ (β ;µq) = 0 can be found by calculatingZnorm.
SinceZ vanishes due to the complex phase of detM, i.e. θ = NfIm(lndetM(µq)), we introduce
the complex phase distribution functionW (θ). The partition function is then written byZnorm(β ;µRe+ iµIm) = ����Z eiθW (θ)dθ

���� : (2.3)
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Identifying θ +2nπ with θ ,Znorm vanishes when the contributions fromθ andθ +π cancel each
other. Using the distribution function, we point out that the phaseθ contains two components: one
is related to the total quark number and produces characteristic properties of Lee-Yang zeros, and
the other is irrelevant to Lee-Yang zeros and causes the signproblem at largeµq.

We discuss the complex phase in the vicinity of the realµq axis. The phase is given by

θ(µRe+ iµIm) = Nf

"
Im(lndetM(µRe))+Re

�
d lndetM(µq)

d(µq=T ) �
µq=µRe

µIm

T
+ � � �# : (2.4)

BecauseZ is real and positive for realµq, theµIm-independent term does not contribute toZ = 0
for finite V . However, because of statistical fluctuations in theµIm-independent part ofθ , Z
may be smaller than the statistical error even atµIm = 0. We plot the histogram of the complex
phase in Fig. 1 (left). The phase is calculated by a Taylor expansion of lndetM up toO(µ6

q ) using
data in a simulation with p4-improved staggered quarks [3].The result ofµIm=T = 0 is given
by theµIm-independent part only. The magnitude ofZ decreases exponentially asµRe increases,
i.e. Z � exp[�hθ2i=2℄ with hθ2i � O(µ2

Re) for µIm = 0 [4]. OnceZ becomes smaller than the
statistical error at largeµq, Znorm vanishes at random. SuchZnorm= 0 are irrelevant to Lee-Yang
zeros, but one cannot distinguish such fake zeros from real ones. This is a kind of the sign problem.

Another interesting point is that the operatord(lndetM(µq))=d(µq=T ) in the second term of
Eq. (2.4) corresponds to the quark number(N) on each configuration. Therefore, the distribution
of the complex phase is related to the distribution of the quark number at the leading order ofµIm.
Let us consider a canonical ensemble with fixedN. The canonical partition functionZC(T;N) for
eachN is related to the grand partition functionZ (T;µq) through a fugacity expansion,Z (T;µq) = ∑

N

ZC(T;N)eNµq=T �∑
N

W (T;N)eiθ̄ = Z
VW (T;V ρ)eiρV µIm=T dρ ; (2.5)

whereρ is the quark number density. In the case ofµq = µRe+ iµIm, the complex phase inZ (T;µq)
is θ̄ = NµIm=T = ρV µIm=T , sinceZC(T;N) is real and positive.W (T;N) is the distribution func-
tion of the total quark number,W (T;N) =ZC(T;N)eNµRe=T .

TheµIm-independent part in this̄θ is eliminated if the canonical partition function is obtained
by a partial path integral with fixedN. Once the problem of the unnecessary part of the phase is
solved, one can discuss the order of phase transitions in thefollowing way.

We find from Eq. (2.5) thatZ as a function of(V µIm=T ) is obtained through a Fourier trans-
formation ofW with respect toρ . In the case of a normal point ofµRe or a crossover pseudo-critical
point, where the distribution is expected to be of Gaussian for sufficiently largeV ,Z does not van-
ish except in the limit ofV µIm=T !�∞ because the function which is obtained through a Fourier
transformation of a Gaussian function again is a Gaussian function. Therefore, the complexµq at
whichZ = 0 does not go to the real axis in the infinite volume limit.

On the other hand, at a first order phase transition point, twophases having a different quark
number coexist. In this case, we expect thatW (T;V ρ) has two peaks having the same peak height at
the transition point. Performing the Fourier transformation of such a double peaked function leads
to a function which has zeros periodically. For example, a distribution functionW (T;V ρ) having
two Gaussian peaks atρ1 andρ2 leads toZ which has zeros atµIm=T = (2n+1)π=[V (ρ2�ρ1)℄;
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Figure 1: Left: The histograms of complex phaseθ for complexµq=T = µRe=T + iµIm=T atβ = 3:65. The
dashed curves are Gaussian functions. Right: The plaquettehistogramw(P;β ) and the effective potential
Veff(P;β ;0) at µq = 0 for eachβ .

with n = 0;1;2;3; � � �. The Lee-Yang zeros approach the real axis as 1=V . Therefore, the study of
1=V scaling of the Lee-Yang zero is equivalent to finding the double-peak structure at a first order
phase transition. The same discussion for SU(3) pure gauge theory is given in [5].

3. Grand canonical partition function by a density of state method

As noted above, the numerical study in terms of the singularities ofZ = 0 has a potential
danger for largeµq. However, the position ofZ = 0 can be estimated from the distribution function
of the complex phase, sinceZ vanishes when the distribution function has two peaks or more and
the contributions from these peaks cancel each other. In this study, we investigate the distribution
function of the complex phase instead ofZ . Once the quark number is fixed, the distribution
function is related to the canonical partition function, asdiscussed in [6] for realµq. However,
fixing the quark number is not essential for eliminating the sign problem, and the calculation ofZC(T;N) is not easy actually. We rather use a density of state method with fixing the plaquette
variable and apply an approximation proposed in [4] to avoidthe sign problem.

We introduce a probability distribution function of the plaquette, which is defined by

W (P0;β ;µq) = 1Z (β ;0) Z DU δ (P0�P) (detM)Nf e6βNsiteP; (3.1)

whereδ (x) is the delta function. For later discussions, we define the average plaquetteP asP ��Sg=(6βNsite) and the quark matrixM as independent ofβ . Nsite is the number of sites. The
plaquette distribution functions forµq = 0 are shown in Fig. 1 (right) for eachβ . We denote
w(P;β )�W (P;β ;0). The normalized partition function is rewritten asZ (β ;µq)Z (β ;0) = Z

W (P;β ;µq) dP = Z
R(P;µq)w(P;β ) dP: (3.2)

Here,R(P;µq) is the reweighting factor for finiteµq defined by

R(P0;µq)� R DU δ (P0�P)(detM(µq))NfR DU δ (P0�P)(detM(0))Nf
= D

δ (P0�P) (detM(µq))Nf(detM(0))Nf

E(β ;µq=0)hδ (P0�P)i(β ;µq=0) : (3.3)
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This R(P;µq) is independent ofβ , andR(P;µq) can be measured at anyβ . In this method, all
simulations are performed atµq = 0 and the effect of finiteµq is introduced though the operator
detM(µq)=detM(0) measured on the configurations generated by the simulationsat µq = 0.

Because QCD has time-reflection symmetry, the partition function is invariant under a change
from µq to�µq, i.e. R(P;�µq) =R(P;µq). Moreover, the quark determinant satisfies detM(�µq) =(detM(µ�

q ))�. From these equations, we get[R(P;µq)℄� = R(P;µ�
q ): (3.4)

This indicates thatR(P;µq) is real in the case of realµq, i.e. µq = µ�
q . Then, the probability

distribution of the plaquette given byR(P;µq)w(P;β ) is real. However, once the imaginary part of
µq becomes nonzero,R(P;µq) is not a real number any more. We thus write the partition function,Z (β ;µq)Z (β ;0) = Z

eiφ(P;µq)jR(P;µq)jw(P;β ) dP = Z
eiφ(P;µq)jR(P;µq)jw(P;β )�dφ

dP

��1

dφ : (3.5)

Because this complex phaseφ vanishes atµIm = 0, φ does not have theµIm-independent part, and
the problem of the statistical error due to theµIm-independent part is eliminated. As we discussed
in the previous section, ifjR(P;µq)jw(P;β )(dφ=dP)�1 becomes a double-peaked function ofφ and
the distance between these peaks is equal to(2n+ 1)π with an integern, the partition function
becomes zero, i.e. a Lee-Yang zero appears. To investigate whether the probability distribution has
double-peak or not, we introduce an effective potential defined by

Veff(φ ;β ;µq) � � ln
��R(P(φ);µq)��� lnw(P(φ);β )+ ln

�
dφ
dP

�
norm

(P(φ);µq): (3.6)

Here, we normalize the value ofdφ=dP by the maximum value for eachµq. This effective potential
is a function ofP in practice. We defineVeff(P;β ;µq)�Veff(φ(P);β ;µq).

Performing Monte-Carlo simulations, we calculate these three quantities,jR(P;µq)j, φ(P;µq)
andw(P;β ). However, the exact calculation of the quark determinant isdifficult except on small
lattices. In this study, we estimate the quark determinant from the data of Taylor expansion coeffi-
cients up toO(µ6

q ) aroundµq = 0 obtained by a simulation of two-flavor QCD with p4-improved
staggered quarks in [3]. The truncation error has been discussed in [4]. Because we defineθ by
the Taylor expansion of lndetM, θ is not restricted to the range from�π to π.

Next, we discuss the sign problem in the calculation ofVeff. We denote the quark determinant
asNf ln[detM(µq)=detM(0)℄ � F + iθ . Histograms ofθ are shown in Fig. 1 (left). We fitted the
histograms to Gaussian functions. The results are the dashed curves. The distributions seem to be
well-approximated by Gaussian functions. Here, we performa cumulant expansion,hexp(F + iθ)i= heFiexp

�
ihθi� 1

2
h(∆θ)2i� i

3!
h(∆θ)3i+ ih∆F∆θi� 1

2
h∆F(∆θ)2i+ � � ��(3.7)

with ∆X = X �hXi. If the distribution ofθ is of Gaussian, theO(θn) terms vanish forn > 2 in
this equation [4]. Moreover, sinceθ � O(µq) andF � O(µ2

q ), this expansion can be regarded as
a power expansion inµq. If the expansion of Eq. (3.7) is good, we can extract the phase factor
eiφ from R easily and the sign problem injRj is eliminated. We deal with the first two terms, i.e.
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Figure 2: The derivative of the effective potentialdVeff=dP at β = 3:65 for (µIm=T )2 = 0:0 (left),(µRe=T )2� (µIm=T )2 = 1:0 (middle) and 4:0 (right). We measured them at the peaks of the plaquette
histograms in Fig. 1 (right) and interpolated the data by a cubic spline method.

ihθi and�h(∆θ)2i=2, assuming the Gaussian distribution. The correlation terms betweenF andθ
are also neglected as a first step. Because we calculate the expectation value with fixedP and the
values ofF andP are strongly correlated, the∆F may be small onceP is fixed. Then,φ � hθi.

The results of the first derivative ofVeff(P;β ;µq) are shown in Fig. 2 for variousµq=T with(µIm=T )2 = 0 (left) and with Re[(µq=T )2℄ = (µRe=T )2� (µIm=T )2 = 1 (middle) and 4 (right).
β = 3:65 is adopted for these results. We discussdVeff=dP instead ofVeff itself becaused2Veff=dP2

is independent ofβ . dVeff=dP at differentβ can be estimated by the equation,

dVeff

dP
(P;β ) = dVeff

dP
(P;β0)�6(β �β0)Nsite; (3.8)

under the parameter change fromβ0 to β . This equation is derived from the equation,w(P;β ) =
e6(β�β0)NsitePw(P;β0); which is given from the definition, Eq. (3.1). Therefore, theform of dVeff=dP
as a function ofP does not change withβ up to aβ -dependent constant. Using the behaviors of
dVeff=dP, the value ofP minimizingVeff, i.e. dVeff=dP = 0, can be also controlled byβ .

If the effective potentialVeff is a double-well function ofφ , dVeff=dφ is an S-shaped func-
tion and vanishes three times. In such a case, there exists a region of P where the derivative
of dVeff=dP = (dVeff=dφ)(dφ=dP) is negative, sinceφ is a monotonically increasing function of
P. The left panel of Fig. 2 shows that the region ofd2Veff=dP2 < 0 appears at high density, i.e.(µRe=T )2 > 6 for µIm=T = 0. Also, in the region of largeµIm=T , dVeff=dP becomes an S-shaped
function, which is shown in the middle and right panels of Fig. 2 for (µRe=T )2 = 1 and 4.

Next, we investigate the boundary at whichdVeff=dP changes to an S-shaped function from a
monotonic function, which is shown as a line in Fig. 3 (left).On this line,d2Veff=dP2 = 0 at a value
of P. The constant part ofdVeff=dP is changed byβ . The values ofβ at which bothd2Veff=dP2 and
dVeff=dP vanish simultaneously are indicated in this figure. Above this line (large Im(µ2

q ) or large
Re(µ2

q )) with this β , the double-well potential appears, and the phase cancelation occurs near this
line. The temperatures corresponding to these values ofβ are shown above the curves ofw(P;β )
in Fig. 1 (right). This result suggests the existence of singularities (Lee-Yang zeros) in the region
of large Im(µ2

q ) as well as the region of large Re(µ2
q ), and the boundary at large Im(µ2

q ) is closer
to µq = 0 than that at large Re(µ2

q ). The distance to the boundary fromµq = 0 is shown in Fig. 3
(right) for eachβ . The blue circles are the distance to the line in the complex plane and the red
square is that on the real axis. The boundary on the real axis is essentially the same as the critical
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Figure 3: Left: Boundary whereVeff changes to double-well type in the complex(µq=T )2 plane. Below
this line,Veff is always of single-well. The numbers in this figure are the values ofβ at whichdVeff=dP
andd2Veff=dP2 vanish simultaneously. Right: The distance to the boundaryform µq = 0 for eachβ . This
corresponds to the radius of convergence. The red symbol is the results on the real axis.

point in [4]. This distance to the boundary is approximatelyequal to the convergence radius of an
expansion of lnZ =(V T 3) = ∑n c2n(µq=T )2n.

4. Conclusions

We studied the singularities of QCD in the complexµq plane by a numerical simulation. Be-
cause the sign problem makes the calculation of the partition function difficult, we discussed a
probability distribution function of a complex phase instead of the partition function itself. In this
calculation, we used a kind of reweighting method together with the approximation in [4]: the
quark determinant is estimated by a Taylor expansion, and the Gaussian distribution of the com-
plex phase of detM is assumed. We found that there is a region where the phase distribution has
two peaks, suggesting the existence of singularities, in the region of large Im(µ2

q ) as well as of large
Re(µ2

q ). We moreover estimated the distance to the nearest singularity from µq = 0 in terms ofµ2
q

for each temperature. The distance is regarded as the convergence radius of a Taylor expansion of
the thermodynamic potential. Although our simulation is performed with relatively heavy quark
mass, the result suggests that convergence radius at the temperature of the real QCD critical point(Tcp) may be longer than the convergence radius in the crossover region atT > Tcp.
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