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the method of analytic continuation and at improving its predictivity, in view of its application to
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theory free of the sign problem such as two-color QCD at finitechemical potential.
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1. Introduction

The investigation the phase diagram of QCD in the temperature-chemical potential plane has
a deep relevance and implications on cosmology, astrophysics and in the phenomenology of heavy
ions collisions. The lattice formulation of QCD is the only tool to approach this important issue
starting from first principles. Unfortunately the study of QCD at non-zero baryonic density by nu-
merical simulations on a space-time lattice is plagued by the well-known sign problem: the fermion
determinant is complex and the Monte Carlo sampling becomesunfeasible. One of the possibilities
to circumvent this problem is to perform Monte Carlo numerical simulations for imaginary values
of the baryonic chemical potential, where the fermion determinant is real and the sign problem is
absent, and to infer the behavior at real chemical potentialby analytic continuation. The method
of analytic continuation [1 – 16] is well-founded and works fine within the limitations posed by the
presence of non-analyticities and by the periodicity of thetheory with imaginary chemical poten-
tial [17].

It is very important to answer the question about which is theoptimal way to extract infor-
mation from data taken at imaginary values of the chemical potential. This is equivalent to an-
swer which is the best interpolating function for data at imaginary chemical potential that could
analytically continued in order to get physical predictions for real values ofµ . The aim of our
investigations in the past two years has been to to study limitations and possible improvements of
the method of analytic continuation [9, 18, 19]. In order to study this problem we have considered
SU(2) (two-color QCD) and SU(3) at finite isospin. Indeed these theories are free of the sign prob-
lem and Monte Carlo numerical simulations at real values of the chemical potential or at real values
of isospin potential are feasible. Therefore it is possibleto compare the analytic continuations with
the data from direct simulations allowing at the same time todiscriminate between interpolating
functions an to test the range of the reliability of the analytic continuation. Here we briefly review
results obtained in studying analytic continuation of physical observables and of the critical line in
two-color QCD. Results obtained for SU(3) at finite isospin has been reviewed in ref. [20].

2. Analytic continuation of physical observables

As already shown long ago [17], the partition function of anySU(N) gauge theory with non-
zero temperature and imaginary chemical potential,µ = iµI , is periodic inθ ≡ µI/T with period
2π/N and that the free energyF is a regular function ofθ for T < TE, while it is discontinuous at
θ = 2π(k+1/2)/N, k= 0,1,2, . . ., for T > TE, whereTE is a characteristic temperature, depending
on the theory.

We have considered SU(2) in presence ofnf = 8 degenerate staggered fermions of mass
am= 0.07. Figure 1 shows the the tentative phase diagram in the(µI ,β ) plane for this theory
(in correspondence of a fermion massam= 0.07) with βE ≃ 1.55 [21, 22] andβc ≃ 1.41 [23]. We
have performed numerical simulations on a 163 × 4 lattice using the exactφ algorithm [21] with
dt = 0.01 (typical statistics: 20k trajectories). We have performed a careful test of the analytic
continuation of physical observables. A detailed discussion of the results obtained is reported in
ref. [9]. In order to show the importance of a careful choice of the interpoIating function of the
imaginary chemical potential data, in figure 2 we display results for two different observables in

2



P
o
S
(
L
A
T
2
0
0
9
)
1
9
2

Analytic continuation in QCD-like theories L. Cosmai

�

�̂I�NN� 3�NN�
1:41 ' �
1:55 ' �E

Figure 1: Phase diagram in the(β , µ̂I )-plane;N is the number of colors,Nτ the extension of the lattice in the
temporal direction. The numerical values forβE andβc are valid for SU(2) in presence ofnf = 8 degenerate
staggered fermions with massam= 0.07

correspondence of two different values ofβ . We have shown that the use of ratio of polynomials as
interpolating function can lead to a dramatic improvement in the analytic continuation of physical
observables.

The aim of our subsequent investigations has been to understand if a careful choice of the
interpolating function can also improve the continuation of the critical line.
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Figure 2: (Left) Negative side of the horizontal axis: imaginary partof the fermion number densityvs. the
imaginary chemical potential atβ = 1.45. Positive side of the horizontal axis: real part of the fermion num-
ber densityvs. the real chemical potential atβ = 1.45. The green (blue) solid lines represent the polynomial
(ratio of polynomials) interpolating function; the dashedlines give the corresponding uncertainty, coming
from the errors in the parameters of the fit. (Right) Chiral condensatevs. µ2 at β = 1.90. The green (blue)
solid lines represent the polynomial (ratio of polynomials) interpolating function; the dashed lines give the
corresponding uncertainty, coming from the errors in the parameters of the fit.

3. Analytic continuation of the critical line

The determination of the critical line in the(T,µ) plane is of overwhelming importance for the
study of strong interactions at finite temperature and baryon density. The analytic continuation of
the (pseudo-)critical line on the temperature-chemical potential plane is well-justified, but a careful
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Figure 3: Chiral susceptibility at(aµ)2 = −0.1225 vs.β . Full red line is the Lorentzian fit. Dashed blue
line is the multihistogram reweighting within its bootstrap error (blue strip).

test in two-color QCD and three-color QCD with finite isospinchemical potential has cast some
doubts on its reliability [18 – 20].

(aµ)2 〈ψψ〉 χ2/d.o.f. 〈L〉 χ2/d.o.f. 〈P〉 χ2/d.o.f.

-0.1225 1.5440(16) 1.34 1.5349(43) 0.85 1.5418(24) 0.93
-0.09 1.5068(15) 0.65 1.5019(29) 0.25 1.5046(21) 1.06

-0.0625 1.4775(29) 0.88 1.4665(32) 0.31 1.4755(37) 0.65
-0.04 1.4532(16) 0.50 1.4453(36) 0.76 1.4522(26) 1.21

-0.0225 1.4324(22) 1.20 1.4240(28) 0.80 1.4300(39) 0.80
-0.01 1.4197(16) 1.86 1.4104(33) 0.43 1.4199(26) 1.45

0. 1.4102(18) 0.07 1.3989(61) 0.49 1.4117(32) 0.07
0.04 1.3528(22) 2.91 1.3388(72) 1.01 1.3631(46) 1.16

0.0625 1.3145(30) 1.34 1.2976(62) 0.87 1.3286(50) 1.28
0.09 1.2433(59) 1.09 1.2508(62) 0.98 1.2864(109) 0.60

Table 1: Summary of the values ofβc(µ2) obtained by fitting the peaks of the susceptibilities of chiral
condensate〈ψψ〉, Polyakov loop〈L〉 and plaquette〈P〉 in SU(2) on a 163 × 4 lattice with fermion mass
am=0.07. For each interpolation theχ2/d.o.f. is given.

In this section we present our results in the determination of the critical line in two-color QCD
using the method of analytic continuation. Contrary to the case of physical observables discussed
in the previous section, the theoretical basis is not straightforward since it relies on the assumption
that susceptibilities, whose peak signals the presence of the transition, be analytic functions of the
parameters on a finite volume [1, 2]. We have tested the methodof analytic continuation in the case
of two-color QCD and in the case of QCD ad finite isospin density [18, 19]. As for usual QCD
simulations, we have determined the critical line for imaginary values of the chemical potential
(µ2 < 0) and interpolate them by suitable functions to be continued to µ2 > 0. In order to test the
reliability of the analytic continuation, the prediction obtained at realµ has been compared with
direct determinations of the transition line.
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Figure 4: Critical couplings obtained from the susceptibility of chiral condensate in SU(2) on a 163× 4
lattice witham=0.07 (left) andam=0.2 (right), together with a linear fit (dotted line) in(aµ)2 to data with
µ2 ≤ 0. The solid lines around the best fit line delimit the 95% CL region.
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Figure 5: Critical couplings obtained from the susceptibility of Polyakov loop in SU(2) on a 163×4 lattice
with am=0.07 (left) andam=0.2 (right), together with a linear fit (dotted line) in(aµ)2 to data withµ2 ≤ 0.
The solid lines around the best fit line delimit the 95% CL region.

It should be remarked that on a finite volume there are no true nonanalyticities, therefore the
location of the critical line may depend on the observable chosen to probe the transition. Conse-
quently we have determined the (pseudo-)critical couplingβc(µ2) by looking at the peaks of the
susceptibilities of three different observables: the chiral condensate, the Polyakov loop, and the
plaquette. In figure 3 we show an example of this determination. We have fitted the peak according
to a Lorentzian function. The result obtained in this way forβc(µ2) agrees well with the result
obtained by means of the multihistogram reweighting.

In table 1 the values ofβc(µ2) obtained in correspondence of the different "probe" observable
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(at fermion massam= 0.07) are shown. They depend very weakly on the observable considered
(only in one case the relative deviation between two determinations at the sameµ2 slightly ex-
ceed 3σ ). The strategy is now to interpolate the criticalβ ’s obtained at fixed imaginary chemical
potential with an analytic function ofµ , to be then extrapolated to real chemical potential. For a
theory free from the sign problem (such as two-color QCD) theextrapolated curve can be com-
pared with the determinations of the criticalβ ’s at real chemical potential obtained through a direct
computation.

As displayed on the left sides of figure 4 and figure 5, imaginary chemical potential data
are very well fitted with a linear polynomial inµ2. If different functions are used (larger order
polynomials, ratio of polynomials) the fit puts to value compatible with zero all parameters (except
two of them) thus reducing again to a first order polynomial inµ2. This is in marked difference
with what we found (see previous section and ref. [9]) for theanalytic continuation of physical
observables, where the ratio of polynomials performed verywell. Moreover, on the left sides of
figures 4 and 5, we can clearly see a quite significative deviation between extrapolation and direct
determination of the critical line at real chemical potential. The discrepancy found could imply
that or the the critical line is not analytic on the whole interval of µ2 or that the interpolation at
µ2 ≤ 0 is not accurate enough to correctly reproduce the behaviorat µ2 > 0. Indeed we have found
(see figure 6) that a polynomial of third order inµ2 nicely fits all data forβc(µ2) and therefore
the critical line is analytic on the whole interval ofµ2. A possible conclusion is that forµ2 ≤ 0
the µ4 and µ6 terms compensate each other at large negative values ofµ2 so that the effective
interpolating function of the data atµ2 ≤ 0 is a first order polynomial inµ2 while for µ2 ≥ 0 the
µ4 andµ6 terms work in the same direction and their contribution cannot be neglected.

In order to verify if this scenario is peculiar to SU(2) we have investigated the same theory
with a different massam= 0.2 for thenf = 8 degenerate fermions. We have also examined the
case of SU(3) at finite isospin [19, 20]. The reason for consider SU(2) at a larger value for the quark
mass is that at any fixed temperatureT the critical value ofµ gets larger, consequently the critical
line could become less curved in the physical regionµ2 > 0. Accordingly higher order terms inµ2

in the description of the critical line by a polynomial couldbe less important. We have sampled the
critical line for SU(2) and quark massam= 0.2. The best interpolation ofβc(µ2) data atµ2 ≤ 0 is
a polynomial linear inµ2 and, at variance with the case of quark massam= 0.07, the extrapolation
to µ2 > 0 compares very well with the direct determination ofβc(µ2) in that region. So we can
argue that the the extrapolation toµ2 > 0 works definitely better for larger quark masses, i.e. away
form the chiral limit.

4. Conclusions

We have reported here an investigation which is part of a larger project devoted to study the
method of analytic continuation in QCD-like theories free from the sign problem and to improve
its predictivity in view of its application to QCD.

For what concerns analytic continuation of physical observables we have shown that a con-
siderable improvement can be achieved, when extrapolatingdata from imaginary to real chemical
potentials, if ratios of polynomials are used as interpolating functions (for a thorough discussion
see ref. [9]).
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Figure 6: Same as in figure 4, but with results of a fit to all data including term up to orderµ6.

We have also presented results for the analytic continuation of the critical line in the(T,µ)

plane from imaginary to real chemical potential both in the case of two-color QCD. We have found
that the critical line aroundµ = 0 can be described by an analytic function. Indeed, a third order
polynomial inµ2 fits all the available data for the critical coupling.

We have shown that there is a clear indication that in the chiral limit high-order terms in the
polynomial interpolation play a relevant role atµ2 > 0 but are less visible atµ2 < 0, this calling
for extremely high accuracy in detecting such terms from simulations atµ2 < 0. The predictions
for the pseudocritical couplings at real chemical potentials may be wrong if data at imaginaryµ
are fitted according to a linear dependence.

All the issues above have undergone further investigation in a different theory such as SU(3)
at finite isospin (results for SU(3) at finite isospin are discussed in refs. [19, 20]).

The lessons we learned in studying analytic continuation inQCD-like theory free from the
sign problem will be used in the near future to the determination the critical line for real QCD.
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