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We perform two flavor QCD simulations with an imaginary chemical potential and measure

derivatives of the pressure up to 4th order as a function of the imaginary chemical potential

and the temperatureT ∈ [0.83Tc,2Tc]. For temperaturesT ≥ Tc, these derivatives are fitted by

a Taylor series inµ/T aboutµ = 0. A fit limited to 4th order describes the data poorly at all

temperatures, showing that we are sensitive to 6th order contributions. Similarly, a 6th order fit

fails for temperaturesTc ≤ T ≤ 1.05Tc, showing the need for 8th order terms. Thus, our method

may offer a computational advantage over the direct measurement of Taylor coefficients atµ = 0.

At temperaturesT ≤ Tc, we fit our data with a hadron resonance gas ansatz. The fit starts to fail

atT & 0.95Tc. Using our fits, we also reconstruct the equation of state as afunction of real quark

and isospin chemical potentials.
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1. Introduction

Although lattice QCD has been used successfully for simulations at zero and finite temper-
atures and at zero density, Monte Carlo simulations at non-zero densities suffer from a technical
problem: the lattice QCD action becomes complex, which prevents its customary probabilistic
interpretation. In principle one could perform simulations at zero density, and use the reweight-
ing technique to obtain information at finite densities. An early attempt known as the Glasgow
method [1] did not work due to the overlap problem: the configurations at zero density were too
“far” from the target configurations at non-zero densities.Considerable progress has been accom-
plished by generalizing the Glasgow method to two-parameter reweighting [2]. Nevertheless, the
range of reliability of this technique is difficult to assess, and its failure can go undetected.

Therefore, another, more conservative way to deal with finite baryon densities may be useful.
It consists of calculating Taylor coefficients of observables with respect to the chemical potential
µ aboutµ = 0. Those Taylor coefficients can be expressed as expectationvalues of complicated
observables, which can be measured at zero density. Thus, there is no difficulty to perform Monte
Carlo simulations in this method. A first, pioneering attempt to obtain quark susceptibilities [3]
has been followed by numerous works, obtaining in particular the response of screening masses to
chemical potential [4, 5, 6]. The Taylor expansion method has also been used for studies of the
equation of state, of the phase transition and of higher order susceptibilities [7, 8, 9, 10]. However,
the complexity of the observable representing the Taylor coefficient, and the computer effort to
measure it, increase rapidly with the order of the Taylor expansion. This motivates us to follow a
different strategy.

Since no difficulty appears for simulations at imaginary chemical potentialµ = iµI , one can
obtain information at finite baryon densities by analytic continuation of observables measured at
finite µI . Actually, this imaginary chemical potential strategy hasbeen applied with success to the
determination of the phase transition [11].

In this study, we perform simulations at finiteµI and measure derivatives of the pressureas
a function ofµI . These derivatives contain information about the Taylor coefficients of theµ = 0
expansion, which can be extracted by fitting. Finally, we tryto reconstruct the equation of state at
finite baryon and isospin densities. The strategy of our method and preliminary results were pre-
sented rather long ago in [12]. Here we report further progress on this project. A related approach,
where the quark density is measured at imaginary quark and real isospin chemical potentials and
then fitted by a polynomial ansatz, has recently been presented in [15].

2. Equation of State at Finite Chemical Potential

The lattice QCD partition function withNf flavors of staggered fermions can be written as

Z =
∫

ΠNf
i detM(U,mi,µi)

1/4 exp(−Sg[U ])dU, (2.1)

whereSg[U ] is the gauge action andM(U,mi ,µi) stands for the staggered Dirac operator with quark
massmi and chemical potentialµi

1. In this study we considerNf = 2 degenerate fermion species
and use the standard Wilson gauge action.

1We set aside potential problems with “rooting” the determinant, particularly at non-zero chemical potential.
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The pressure or the equation of state with chemical potential µu andµd is given by

p(µu,µd) = −
F
V

=
T
V

lnZ(µu,µd), (2.2)

and can be expanded in a Taylor series aboutµu = µd = 0 as

∆p
T4 ≡

p(µu,µd)− p(0,0)

T4 = ∑
n,m=1

1
n!m!

fnm

(µu

T

)n(µd

T

)m
, (2.3)

where fnm are the Taylor expansion coefficients. They vanish when(n+ m) is odd due to CP
symmetry. Furthermore, for equal quark masses there is another symmetryfnm = fmn. The fnm’s
are related to derivativesχi j of the pressure measured atnon-zerochemical potential by

T i+ j−4χi j =
∂ i+ j(p(µu,µd)/T4)

∂ (µu/T)i∂ (µd/T) j = ∑
n=i,m= j

1
(n− i)!(m− j)!

fnm

(µu

T

)n−i (µd

T

)m− j
. (2.4)

While at zero densityχi j = fi j T4−i− j , at non-zero densitiesχi j includes higher orderfnm terms,
and does not vanish for odd(i + j). This suggests to use all availableχi j ’s at non-zero densities,
in order to estimate thefnm’s. Here, we try to estimatefnm by fitting all χi j simultaneously to the
polynomial expansions eq.(2.4). Of course,χi j at non-zero baryon density is not directly obtainable
from simulations on the lattice because of the sign problem.However,χi j can be obtained through
simulations at imaginary quark chemical potential or at real isospin density. Here, we calculateχi j

at imaginary chemical potentials.

Therefore, we setµ = iµI . Eachχi j depends on higher order Taylor coefficients following
eq.(2.4). Therefore, with sufficiently accurate data onχi j one can also obtain higher order Taylor
coefficients fnm, n > i,m > j. The measurements of the derivatives involve computing traces of
inverse Dirac matrix products. These traces were estimatedusing the noise method with 40Z2

random vectors. In this study we measureχi j up to i + j = 4. Thus we have 8 differentχi j ’s. We
fit all the data to the corresponding 8 polynomial expansionseq.(2.4) truncated to a given order
(n+m), and try to obtain the Taylor coefficientsfnm.

As we will see, in the confined phase a Taylor expansion is not the most compact description
of the pressure. Instead, forT ≤ Tc we use the Hadron Resonance Gas (HRG) model. In the HRG
model the pressure is given as2

∆p(µu,µd)

T4 = G[cosh(
2µIs

T
)−1]+R[cosh(

3µq

T
)cosh(

µIs

T
)−1] (2.5)

+ W[cosh(
3µq

T
)

(

cosh(
µIs

T
)+cosh(

3µIs

T
)

)

−2],

whereG,R andW are constants related to the hadron spectrum, and quark and isospin chemical
potentialsµq andµIs are defined asµq = (µu + µd)/2 andµIs = (µu−µd)/2 respectively.

The derivatives of the pressure with respect toµu and µd, instead of having the polynomial
form eq.(2.4), are now obtained by differentiating eq.(2.5). The coefficientsG,R andW are then

2This expression is taken from (4.3) in [8].
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Figure 1: χ2/do f of various polynomial ansätze as a function ofT/Tc. The fitting range ofaµI is 0.0-0.24.

extracted by fitting imaginary-µ data. In terms ofG,RandW, the first Taylor coefficients are given
by

f20 =

(

G+
5
2

R+7W

)

, (2.6)

f11 = −(G+2(R+W)) , (2.7)

f22 = G+4(R+W), (2.8)

f31 = G+
7
2

R+49W, (2.9)

f40 = −G+5(R+W). (2.10)

Table 1: χ2/do f for polynomial ansatz of degree 4, 6 and 8 (maximum value of(n+m) in eq.(2.4)).

T/Tc 0.99 1.00 1.03 1.04 1.065 1.085 1.1 1.2 1.3 1.4 1.5 2.0

4th 85.1 134.9 3.15 3.14 3.50 7.24 3.20 10.9 11.3 6.67 9.95 9.15
6th 19.1 42.1 1.60 2.19 0.82 5.50 5.53 1.52 0.89 2.46 1.09 2.10
8th 4.53 5.29 1.64 1.77 0.81 1.01 2.15 1.72 0.91 2.16 1.22 1.28

Table 2: χ2/do f for HRG ansatz.

T/Tc 0.83 0.9 0.95 0.98 0.99 1.00

HRG 1.29 1.00 2.10 15.8 10.5 29.4

3. Simulations at Imaginary Chemical Potential

We have performed simulations on 83 × 4 lattices at a quark massmq = 0.05 and imaginary
chemical potentialsaµI = 0.0, . . . ,0.24. We have chosen 16 values ofβ ranging from 4.90 to 6.85,
which correspond toT/Tc = 0.83∼ 2.0. Most of the simulations were performed using the R-
algorithm with a step size∆t = 0.02. We also used the Rational HMC algorithm [13] to check
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Figure 2: Taylor coefficients: (a)f11, (b)f20, (c)f22, (d)f40 and (e)f31.
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Figure 3: Equation of state (Pressure) as a function ofaµq andaµIs at (a)β = 5.53(T/Tc ∼ 1.1) and at
(b)β = 4.90(T/Tc ∼ 0.83).

the systematic stepsize errors caused by the R-algorithm, and found no significant difference for
this lattice size and quark mass. At each simulation point wehave accumulated 12000 to 20000
measurements. The measurements were taken every 5 trajectories to balance the computational
effort of the R-algorithm simultion and measurements.

3.1 Fitting to χi j

We determinefnm by fitting all the derivatives simultaneously to the corresponding ansatz of
χi j . We used the polynomial ansatz eq.(2.4) for the data atT/Tc ≥ 0.99, and the HRG ansatz
eq.(2.5) atT/Tc ≤ 1.0. Tables 1 and 2 show theχ2/do f for the polynomial and HRG fits, respec-
tively. The fitting range ofaµI is 0.0− 0.24, which covers most of the range up to the Roberge-
Weiss transition atµI = πT/3.

Fig.1 compares theχ2/do f among various polynomial and HRG fits. One can see that the 4th
order polynomial ((n+ m) ≤ 4 in the expansion eq.(2.4)) is not good over the whole temperature
range, and that the 6th order one becomes poor in the vicinityof Tc. Similarly, one can also see
that the quality of the fit based on the HRG ansatz becomes poorfor T/Tc ≥ 0.95. While the
failure of the HRG ansatz nearTc has been noticed before [14, 15], it is remarkable that we cansee
clear indications of 6th order, and even 8th order Taylor coefficients with our modest study. The
measurement of 8th order Taylor coefficients represents thecurrent state of the art [10].

Fig.2 shows the Taylor coefficientsf11, f20, f22, f40 and f31 as a function of temperature.
Those results are obtained by fitting a 6th order polynomial in a range ofaµI = 0.0− 0.24. For
T/Tc ≥ 1.0, they agree well with those obtained from the direct measurement of derivatives at
µ = 0, i.e. χi j |µ=0, but are more accurate. We do not show the 6th order Taylor coefficients
f60, f51, f42 and f33: even though their collective effect is statistically significant, they cannot be
individually determined with any statistical accuracy. Weonly observe thatf60 is dominant at this
order.

Similary, the Taylor coefficients obtained from the HRG ansatz for T/Tc≤ 0.95 also agree well
with direct measurements ofχi j |µ=0, with higher accuracy. However, forT/Tc > 0.95 the results

6
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Figure 4: Number density atβ = 5.53(T/Tc ∼ 1.1) as a function ofaµq andaµIs: (a)Nq/T3 and (b)NIs/T3.
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Figure 5: Number density atβ = 4.90(T/Tc ∼ 0.83) as a function ofaµq andaµIs: (a)Nq/T3 and (b)
NIs/T3.

from the HRG ansatz fits deviate fromχi j |µ=0. This observation is consistent with the measured
χ2/do f, which increase considerably forT/Tc > 0.95.

3.2 Equation of State at Finite Densities

Once we obtain the Taylor coefficients of the pressure or the parameters of the HRG model,
we can reconstruct the equation of state. Here, we present two cases atβ = 5.53(T/Tc ∼ 1.1)

andβ = 4.90(T/Tc ∼ 0.83) which are reconstructed with the Taylor series and the HRG ansatz,
respectively. Fig. 3(a) shows the equation of state atβ = 5.53(T/Tc ∼ 1.1) as a function ofaµq

andaµIs. Similarly Fig. 3(b) shows the equation of state atβ = 4.90(T/Tc ∼ 0.83).
One can also reconstruct other interesting quantities. Fig. 4 shows the quark number density

Nq and the isospin number densityNIs at β = 5.53 as a function ofaµq andaµIs. Similarly, Fig. 5

showsNq/T3 andNIs/T3 at β = 4.90. Here,Nq andNIs are defined asNq =
∂ p
∂ µq

andNIs =
∂ p

∂ µIs
,

respectively.
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4. Conclusions

We have performed simulations at imaginary chemical potentials and measured the derivatives
of the pressure with respect toµ , at zero and non-zero imaginaryµ . By fitting all the derivatives to
a polynomial ansatz or an HRG ansatz, we obtained the Taylor coefficients of theµ/T expansion
of the pressure aboutµ = 0. The Taylor coefficients obtained by a polynomial fit forT/Tc ≥ 1.0
agree well with the direct measurement of derivatives atµ = 0, χi j |µ=0, but are more accurate.
Remarkably, we find it impossible to obtain a good fit, at any temperature, without including 6th
order derivatives. ForTc ≤ T ≤ 1.04Tc, 8th order derivatives are necessary. Thus, our approach
may provide a cheaper alternative to the direct measurementof high-order derivatives atµ = 0.

Similarly, belowTc we observed that the Taylor coefficients obtained by the HRG ansatz de-
viate from χi j |µ=0 for T/Tc ≥ 0.95, and the HRG ansatz itself gives a poor description of the
imaginary-µ data. The same observation has been made in [15].

Finally, using the obtained Taylor coefficients we reconstructed the equation of state and the
number densities as a function ofµq andµIs up to 4th order.
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