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1. Introduction

Although lattice QCD has been used successfully for sirmanatat zero and finite temper-
atures and at zero density, Monte Carlo simulations at moa-densities suffer from a technical
problem: the lattice QCD action becomes complex, which gmey its customary probabilistic
interpretation. In principle one could perform simulascet zero density, and use the reweight-
ing technique to obtain information at finite densities. Aamlg attempt known as the Glasgow
method [1] did not work due to the overlap problem: the comfigjons at zero density were too
“far” from the target configurations at non-zero densiti€snsiderable progress has been accom-
plished by generalizing the Glasgow method to two-paramretgeighting [2]. Nevertheless, the
range of reliability of this technique is difficult to asseand its failure can go undetected.

Therefore, another, more conservative way to deal withefibéryon densities may be useful.
It consists of calculating Taylor coefficients of obsereabivith respect to the chemical potential
U aboutu = 0. Those Taylor coefficients can be expressed as expeciatioas of complicated
observables, which can be measured at zero density. Thass,ithno difficulty to perform Monte
Carlo simulations in this method. A first, pioneering att¢éngpobtain quark susceptibilities [3]
has been followed by numerous works, obtaining in partidiia response of screening masses to
chemical potential [4, 5, 6]. The Taylor expansion methos &iso been used for studies of the
equation of state, of the phase transition and of higheranaeceptibilities [7, 8, 9, 10]. However,
the complexity of the observable representing the Tayl@ffament, and the computer effort to
measure it, increase rapidly with the order of the Tayloraggion. This motivates us to follow a
different strategy.

Since no difficulty appears for simulations at imaginaryrol@l potentialy =iy, one can
obtain information at finite baryon densities by analytiatiouation of observables measured at
finite . Actually, this imaginary chemical potential strategy bagn applied with success to the
determination of the phase transition [11].

In this study, we perform simulations at finite and measure derivatives of the pressase
a function ofy. These derivatives contain information about the Tayl@fiicients of theu = 0
expansion, which can be extracted by fitting. Finally, wettryeconstruct the equation of state at
finite baryon and isospin densities. The strategy of our otbtind preliminary results were pre-
sented rather long ago in [12]. Here we report further pregom this project. A related approach,
where the quark density is measured at imaginary quark aldsespin chemical potentials and
then fitted by a polynomial ansatz, has recently been predem{15].

2. Equation of State at Finite Chemical Potential
The lattice QCD patrtition function withls flavors of staggered fermions can be written as
Z:/I'IiNf detM(U, m;, )Y 4 exp(—S[U])dU, (2.1)

whereS;[U] is the gauge action ar (U, my;, ;) stands for the staggered Dirac operator with quark
massm and chemical potentigk®. In this study we consideX; = 2 degenerate fermion species
and use the standard Wilson gauge action.

Iwe set aside potential problems with “rooting” the determin particularly at non-zero chemical potential.
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The pressure or the equation of state with chemical potemtiand g is given by

F T
P(Hu, Ha) = mvaaty INZ(py, Ud), (2.2)

and can be expanded in a Taylor series abpput ug = 0 as

Ap _ p(Hu; Ha) — P(0,0) _ 1 Hu\" (Ha\™
me = Y am() (F) @3)

where f,,, are the Taylor expansion coefficients. They vanish wtres m) is odd due to CP
symmetry. Furthermore, for equal quark masses there ifansymmetryfon = fn. The fom's
are related to derivativeg; of the pressure measurednam-zerochemical potential by

T4y = ‘7'+J(P(Hu,ﬂd)/T4? -3 N fnm<ﬂ)n_i <ﬂ)m_j' (2.4)
O/ TV (pa/TH e (=DM (m—Jr "™\ T/ \T

While at zero densityij = fijT4_i_j, at non-zero densitieg;; includes higher ordef,n, terms,

and does not vanish for od@+ j). This suggests to use all availa¥g’s at non-zero densities,

in order to estimate thé,,'s. Here, we try to estimaté,, by fitting all x;; simultaneously to the

polynomial expansions eq.(2.4). Of courgg,at non-zero baryon density is not directly obtainable

from simulations on the lattice because of the sign probldowever,x;; can be obtained through

simulations at imaginary quark chemical potential or atis@spin density. Here, we calculaxg

at imaginary chemical potentials.

Therefore, we sei = iy. Eachy;; depends on higher order Taylor coefficients following
eq.(2.4). Therefore, with sufficiently accurate dataygnone can also obtain higher order Taylor
coefficientsf,m, N > i,m> j. The measurements of the derivatives involve computingetaf
inverse Dirac matrix products. These traces were estimaged) the noise method with 40,
random vectors. In this study we measyreup toi + j = 4. Thus we have 8 differeng;’s. We
fit all the data to the corresponding 8 polynomial expansiem$2.4) truncated to a given order
(n+m), and try to obtain the Taylor coefficientg.

As we will see, in the confined phase a Taylor expansion ishotrtost compact description
of the pressure. Instead, for< T, we use the Hadron Resonance Gas (HRG) model. In the HRG
model the pressure is giverfas

L(;#, Ho) _ G[cosK( 2_‘;'3) —1]+ R[cosk(%)cosf{#) ~1 (2.5)
+ W[cosk(%) <cosl‘($) +cosh($)> -2,

whereG,R andW are constants related to the hadron spectrum, and quarksasgin chemical
potentialspiy and s are defined aglq = (Uu+ Ha)/2 andps = (Hy — Hd)/2 respectively.

The derivatives of the pressure with respecptoand g, instead of having the polynomial
form eq.(2.4), are now obtained by differentiating eq.J2.bhe coefficients5,R andW are then

2This expression is taken from (4.3) in [8].
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Figure1: x2/dof of various polynomial anséatze as a functiorllofT,. The fitting range ofiy is 0.0-0.24.

extracted by fitting imaginary data. In terms o6,R andW, the first Taylor coefficients are given
by

fo0 = <G+ gR+ 7w> , (2.6)
f11 = — (G+2(R+W)), 2.7)
foo = G+ 4(R+W), (2.8)
far =G+ ;RJF 49W, (2.9)
fa0= —G+5(R+W). (2.10)

Table 1: x2/dof for polynomial ansatz of degree 4, 6 and 8 (maximum valugeafm) in eq.(2.4)).

T/T. 099 100 103 1.04 1065 108 11 12 13 14 15 20
4th  85.1 1349 3.15 314 350 724 320 109 113 6.67 9.955 9.1
6th 191 421 160 219 082 550 553 152 089 246 1.09 2.10
8th 453 529 164 177 081 101 215 172 091 216 122 1.28

Table 2: x?/dof for HRG ansatz.
T/T. 0.83 09 095 098 0.99 1.00
HRG 129 1.00 210 158 105 294

3. Simulations at Imaginary Chemical Potential

We have performed simulations oA 8 4 lattices at a quark masg,; = 0.05 and imaginary
chemical potentialay;, = 0.0,...,0.24. We have chosen 16 valuesf®fanging from 4.90 to 6.85,
which correspond td@ /T, = 0.83 ~ 2.0. Most of the simulations were performed using the R-
algorithm with a step sizat = 0.02. We also used the Rational HMC algorithm [13] to check
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Figure 2: Taylor coefficients: (afy1, (b)f20, (C)f22, (d)f40 and (e¥a1.
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Figure 3: Equation of state (Pressure) as a functiorap§ andaps at (a) 8 = 5.53(T/Tc ~ 1.1) and at
(b)B =4.90(T /T ~ 0.83).

the systematic stepsize errors caused by the R-algorithdhfaaund no significant difference for

this lattice size and quark mass. At each simulation poinhaxge accumulated 12000 to 20000
measurements. The measurements were taken every 5 triedto balance the computational
effort of the R-algorithm simultion and measurements.

3.1 Fitting to xi;

We determinef,, by fitting all the derivatives simultaneously to the cormasging ansatz of
Xij- We used the polynomial ansatz eq.(2.4) for the dat@ /& > 0.99, and the HRG ansatz
eq.(2.5) afl /T, < 1.0. Tables 1 and 2 show the¢’/dof for the polynomial and HRG fits, respec-
tively. The fitting range ofay, is 0.0 — 0.24, which covers most of the range up to the Roberge-
Weiss transition aty = T /3.

Fig.1 compares thg?/dof among various polynomial and HRG fits. One can see that the 4th
order polynomial (n+m) < 4 in the expansion eq.(2.4)) is not good over the whole teatper
range, and that the 6th order one becomes poor in the viaily. Similarly, one can also see
that the quality of the fit based on the HRG ansatz becomes fpodr/T; > 0.95. While the
failure of the HRG ansatz ned has been noticed before [14, 15], it is remarkable that wesean
clear indications of 6th order, and even 8th order Taylofffawents with our modest study. The
measurement of 8th order Taylor coefficients representstitrent state of the art [10].

Fig.2 shows the Taylor coefficients,, fog, f22, f40 and fz; as a function of temperature.
Those results are obtained by fitting a 6th order polynonmial range ofayy = 0.0—0.24. For
T/Tc > 1.0, they agree well with those obtained from the direct measent of derivatives at
pu =0, i.e. Xij|lu=o, but are more accurate. We do not show the 6th order Tayldficieats
fs0, fs1, f42 and fz3: even though their collective effect is statistically sfgrant, they cannot be
individually determined with any statistical accuracy. Wy observe thatgg is dominant at this
order.

Similary, the Taylor coefficients obtained from the HRG dnéar T /T, < 0.95 also agree well
with direct measurements afj|,—o, with higher accuracy. However, fdr/T. > 0.95 the results
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Figure 5: Number density af = 4.90(T /T, ~ 0.83) as a function ofaig andaps: (a)Ng/T2 and (b)
Nis/T3.

from the HRG ansatz fits deviate frof |u—o. This observation is consistent with the measured
Xx?/dof, which increase considerably for/T. > 0.95.

3.2 Equation of State at Finite Densities

Once we obtain the Taylor coefficients of the pressure or énarpeters of the HRG model,
we can reconstruct the equation of state. Here, we presentases aff = 5.53(T/T; ~ 1.1)
and 3 = 4.90(T /T ~ 0.83) which are reconstructed with the Taylor series and the HRS&atan
respectively. Fig. 3(a) shows the equation of statg at 5.53(T /T ~ 1.1) as a function ofpiq
andaps. Similarly Fig. 3(b) shows the equation of stateBat 4.90(T /T; ~ 0.83).

One can also reconstruct other interesting quantities. 4#&hows the quark number density

Ny and the isospin number densNys at 8 = 5.53 as a function oy andays. Similarly, Fig. 5
showsNg/T3 andN;s/T? at B = 4.90. Here N andNs are defined ably = jp jup ,
Is

Tq andN;s =

respectively.
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4. Conclusions

We have performed simulations at imaginary chemical pa@ksrand measured the derivatives
of the pressure with respect tn at zero and non-zero imaginauy By fitting all the derivatives to
a polynomial ansatz or an HRG ansatz, we obtained the Tagkfficients of theu /T expansion
of the pressure abouyt = 0. The Taylor coefficients obtained by a polynomial fit fofT, > 1.0
agree well with the direct measurement of derivatives at 0, Xij|,—o, but are more accurate.
Remarkably, we find it impossible to obtain a good fit, at amggerature, without including 6th
order derivatives. Fof. < T < 1.04T, 8th order derivatives are necessary. Thus, our approach
may provide a cheaper alternative to the direct measureofidigh-order derivatives gt = 0.

Similarly, belowT. we observed that the Taylor coefficients obtained by the HR€& de-
viate from x;j|u—o for T/Tc > 0.95, and the HRG ansatz itself gives a poor description of the
imaginaryy data. The same observation has been made in [15].

Finally, using the obtained Taylor coefficients we recansd the equation of state and the
number densities as a function gf and ui;s up to 4th order.
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