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1. Introduction

The lattice provides a very elegant way of calculating renormalized observables. In this frame-
work several methods are known to extract the running of the QCD coupling constant, which allows
for the determination of the QCD scale,ΛQCD and for the study of infrared properties. In the case
of quenched world the mismatch between the perturbative running and the lattice one has revealed
the presence of a non-null gluon condensate of dimension twothat, being non-gauge invariant, has
motivated the research of its possible implications for thegauge-invariant world.

In this note we apply the already established methods forNf = 2 dynamical quarks, includ-
ing light up and down quarks.Nf = 2+ 1+ 1 lattice simulations are already being performed,
thus a realistic lattice estimate ofΛMS directly comparable with experimental results will become
inmediatly accesible.

In particular here we focus on the study of the ghost-gluon vertex in the configuration of
vanishing incoming ghost-momentum. Only in this case the ghost-gluon vertex can be related
directly to the bare and ghost propagators, making calculations simpler.

2. Taylor scheme

2.1 Definitions

In [1] was shown that the so-called Taylor scheme is the only one where the coupling can be
cumputed from two-point Green functions, due to Taylor’s theorem. We write Landau gauge gluon
and ghost propagators as:

(
G(2)

)ab

µν
(p2,Λ) =

G(p2,Λ)

p2 δab

(
δµν −

pµ pν

p2

)
,

(
F(2)

)a,b
(p2,Λ) = −δab

F(p2,Λ)

p2 ; (2.1)

with Λ the regularisation cutoff. The renormalized dressing functions, GR and FR are defined
through :

GR(p2,µ2) = lim
Λ→∞

Z−1
3 (µ2,Λ) G(p2,Λ)

FR(p2,µ2) = lim
Λ→∞

Z̃−1
3 (µ2,Λ) F(p2,Λ) , (2.2)

with MOM renormalization condition

GR(µ2,µ2) = FR(µ2,µ2) = 1 . (2.3)

Due to Taylor’s non-renormalization theorem, the renormalized coupling defined from the ghost-
gluon vertexwith a zero incoming ghost momentumcan be computed from ghost and gluon
propagators using:

αT(µ2) ≡
g2

T(µ2)

4π
= lim

Λ→∞

g2
0(Λ2)

4π
G(µ2,Λ2)F2(µ2,Λ2) ; (2.4)

what has been called Taylor1 scheme [1]
1From now on, the quantities expressed in this scheme will carry theT index.
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2.2 Perturbation theory and OPE

The perturbative running ofαT is known up to four loops [2],

αT(µ2) =
4π
β0t

(
1−

β1

β 2
0

log(t)
t

+
β 2

1

β 4
0

1
t2

((
log(t)−

1
2

)2

+
β̃2β0

β 2
1

−
5
4

))
(2.5)

+
1

(β0t)4

(
β̃3

2β0
+

1
2

(
β1

β0

)3
(
−2log3(t)+5log2(t)+

(
4−6

β̃2β0

β 2
1

)
log(t)−1

))
(2.6)

with t = ln µ2

Λ2
T

and the perturbative coefficients:

β̃0 = β 0 = 11−
2
3

Nf

β̃1 = β 1 = 102−
38
3

Nf

β̃2 = β 2−β1c1 + β0(c2−c2
1)

= 3040.48 − 625.387Nf + 19.3833N2
f

β̃3 = β 3−2β 2c1 + β 1c2
1 + β0(2 c3−6 c2c1 +4 c3

1)

= 100541− 24423.3 Nf + 1625.4 N2
f − 27.493N3

f , (2.7)

The parametersΛQCD in two schemes can be perturbatively related at high energy.In particu-
lar, from theT-scheme toMSthis relationship reads:

ΛMS

ΛT
= e

−
c1

2β0 = e
−

507−40Nf

792−48Nf . (2.8)

Following the Operatore Product Expansion (OPE) program both ghost and gluon propagators
show the appearance of a non-perturbative power correctiondriven by the non-gauge invariant
dimension-two gluon condensate (see [1], [3] and referencies therein). Including power corrections
at tree-level in ghost and gluon dressing functions, one canrewrite (2.4) as

αT(µ2) = αpert
T (µ2)

(
1+

9
µ2

g2
T(q2

0)〈A
2〉R,q2

0

4(N2
C−1)

)
, (2.9)

whereq2
0 ≫ ΛQCD is some perturbative scale and the running of the perturbative part is described

by equation (2.5). This formula will be used for the data analysis in the next section that does
depend on two parameters,ΛQCD and〈A2〉, that will be fitted.

3. Lattice setup and role ofH(4) orbits

The results presented here are based on the gauge field configurations generated by the Euro-
pean Twisted Mass Collaboration (ETMC) with the tree-levelimproved Symanzik gauge action [4]
and the twisted mass fermionic action [5] at maximal twist, discussed in detail in refs. [6]- [9].
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We preliminarly exploited 100 ETMC gauge configurations obtained forβ = 3.9 (µ = 0.0085),
60 forβ = 4.05 (µ = 0.006) and 100 forβ = 4.2 (µ = 0.002) simulated on 243×48 lattices, corre-
sponding toNf = 2 in order to compute the gauge-fixed 2-point gluon and ghost Green functions.

For fixing Landau gauge in the lattice we minimise the functional

FU [g] = Re∑
x

∑
µ

(
1−

1
N

g(x)Uµ (x)g(x+ µ)

)
(3.1)

respect to the gauge transformg. Ghost propagator is computed in Landau gauge as the inverseof
the Faddeev-Popov operator, that is written as the lattice divergence,

M(U) = −
1
N

∇ · D̃(U) (3.2)

where the operator̃D acting on an arbitrary element of the Lie algebra,η reads:

D̃(U)η(x) =
1
2

(
Uµ(x)η(x+ µ)−η(x)Uµ(x)+ η(x+ µ)U†

µ −u†
µ(x)η(x)

)
. (3.3)

More details on the lattice procedure for the inversion of Faddeev-Popov operator can be found
on [10].

As we intend to fit the running ofαs, our interest is to have, on one hand the highest momenta
accesible and, on the other the highest number of data pointsto perform the fit. When working
at a given lattice spacing, the momentum window has to be limited due to the presence of high
discretization errors. These lattice artifacts are due to the breaking of the rotational symmetry of
the euclidean space-time when using an hypercubic lattice,where this symmetry is restricted to the
discrete H(4) isometry group. These artifacts can be illustrated as the difference between the lattice
momenta,

p̃µ =
1
a

sinapµ (3.4)

and the continuum ones,

pµ =
2πn
Na

n = 0,1, · · · ,N . (3.5)

Clearly these two momenta will differ except in the limitn/N → 0. Following what was recently
discussed in [11] and [12], let us consider an adimensional lattice correlation functionQ that de-
pends on the lattice momentumap̃µ and some mass scaleaΛ: Q ≡ Q(a2 p̃2,a2Λ2) . The lattice
momentum can be developed as:

a2 p̃2
µ = a2p2

µ +c1a4p4
µ + · · · (3.6)

with c1 a constant that depends on the discretization chosen. Then:

a2 p̃2 ≡
4

∑
µ=1

a2 p̃2
µ = a2p2 +c1a4p[4] + · · · = a2p2

(
1+c1a2 p[4]

p2 + · · ·

)
(3.7)
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wherep[4] = ∑4
µ=1 p4

µ . If the lattice spacing is small,ε = a2p[4]/p2 << 1 and we can developQ in
powers ofε :

Q(a2p̃2
µ ,a2Λ2) ≡ Q

(
a2p2

(
1+c1a2 p[4]

p2 + · · ·

)
,a2Λ2

)
(3.8)

= Q(a2p2,a2Λ2)+
dQ
dε

∣∣∣∣
ε=0

a2 p[4]

p2 + · · · (3.9)

H(4) methods are based on the appearance of aO(a2) corrections driven by ap[4] term. The
basic method is to fit between the whole set of orbits sharing the samep2 the coefficientR and the
extrapolated value ofQ free from H(4) artefacts. In particular we assumed that the coefficient

R(a2p2,a2Λ2) =
dQ
(
a2p2 (1+c1ε + · · ·) ,a2Λ2

)

dε

∣∣∣∣∣
ε=0

has a smooth dependence ona2p2 over a given momentum window. This can be achieved by
developingR asR= R0 + R1a2p2 and making a global fit in a momentum window between(p−
δ , p+ δ ) to extract the extrapolated value ofQ for the momentump and shifting the window for
every lattice momentum. This procedure of fitting is somehowdifferent from the previous one,
since the extrapolation does not rely on any particular assumption for the functional form ofR. On
the other, the systematic error coming from the extrapolation can be estimated by modifying the
width of the fitting window.

4. Results

4.1 Calibration of lattice spacings

The running ofαT given by the combination of Green functions in eq. (2.4) doesdepend
in principle on the momentum and the cut-off. Nevertheless,if we are not far from the continuum
limit, and discretization errors are treated properly, thecoupling will depend only on the momentum
(except, maybe, finite volume errors at low momenta).

The procedure to compute the ratio of lattice spacings is then straightforward: it can be ob-
tained by requiring the estimates ofαT for two different simulations (two differentβ ’s) to match
properly each other. This method has proven to be successfulin quenched lattice simulations [1],
with a deviation with respect to usual Sommer parameter estimates lower than 5%.

TheNf = 2 results can be seen in figure 4.1, where the lattice spacing for the lowerβ (β = 3.9)
has been assumed to coincide with the one given in [6] and the other two, forβ = 4.05 andβ = 4.20
are fitted to match the data.

The deviations are found to be smaller than 5% (see Tab. 4.1),as in the quenched case. This
deviation might be a signal of discretization errors still present at theseβ ’s. Another source of
discrepancy could be a possible dependence of results on thequark masses. Further efforts should
be done in this sence.
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This paper Sommer scale deviation (%))

a(3.9)/a(4.05) 1.223(3) 1.277 4.2

a(3.9)/a(4.2) 1.503(5) 1.547 2.9

Table 1: Best-fit parameters for the ratios of lattice spacings. The error is purely statistics.
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Figure 1: QCD coupling defined by from the three lattice data sets employed: red squares stand forβ = 4.2,
green ones forβ = 4.05 and blue forβ = 3.90. Right (left) plot shows estimates for momenta above (below)
10 GeV2. The physical value (inGeV) of the momentum inx-axis is obtained by applying the ratios of
lattice sizes in tab.1 anda(3.9)−1 = 2.301GeV.

4.2 ΛMS and
〈
A2
〉

condensate

The value ofΛMS can be obtained by inverting (2.5) for the lattice values ofαT obtained
from the lattice for each momentum. When done (figure 2) the values of ΛMS obtained have a
strong dependence on the momentum, showing the presence of some non-perturbative effects not
taken into account in (2.5). The values ofΛMS are around 320−360MeV, much higher than other
estimations.

The first non-perturbative correction that does appear un Landau gauge is the〈A2〉 gluon con-
densate, whose effects on the running coupling are includedin (2.9). The values ofΛMS and〈A2〉

can be simultaneously fixed from lattice data using, for example, the “plateau” method, shown
in [1]. It consist in varying the value of the condensate to look for a “plateau” inΛMS over a given
momentum window.

In fig. 2, we also plotΛMS derived from confronting the lattice value ofαT with the pertur-
bative+OPE prediction, in terms of the momentum whereαT is estimated from the lattice. The
application of the “plateau” method allows us to get as a bestestimate:

ΛMS = 267±11MeV ; (4.1)

where again the error takes into account no systematic effect. This result is in good agreement with
other estimations in litteraure [13]- [15]. The value of the

〈
A2
〉

obtained is

g2
T

〈
A2〉

R,µ = 9.6±0.6GeV2 (4.2)

which shows a significant increase respect to previous quenched estimates [1].
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Figure 2: ΛMS derived from fitting the lattice value ofαT with the perturbative+OPE prediction, in terms of
the momentum whereαT is estimated from the lattice, as described in ref. [1].

5. Conclusions and outlooks

We calculated the running coupling in the Taylor scheme withNf = 2 flavours of dynamical
quarks. We found that the matching of the results obtained for differentβ ’s allows to compute the
ratio of lattice spacings, with a deviation with respect to the string tension always smaller than 5%.

By comparing the lattice result with the expectation comingfrom perturbation theory, we
found the need for a dimension-two gluon condensate associated to a non-perturbative power cor-
rection. Including this term allows for an agreement between lattice and continuous formulae and
then the extraction of the scaleΛNf =2

MS
. Our result is in agreement with previous determinations.

The application of this method is straightforward for a higher number of quark flavours and
might be used in forthcomingNf = 2+1+1 lattice simulations.

As an outlook, we are interested in checking the mass-dependence of our results. In particular
two effects are to be expected. The first one, at the level of the calibration, could show a dependence
of the lattice spacing both onβ andµ . In any case this should not affect our results. The second
one could be the effect of the mass on the coupling, which seems to be rouled out because of the
good overlap of the coupling already observed at differentµ ’s.
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