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We discuss Dyson’s argument that the vacuum is unstablerundbangeg’? — —g?, in the
context of lattice gauge theory. For compact gauge grobpspartition function is well defined

at negativey?, but the average plaquefehas a discontinuity wheg? changes sign. This reflects

a change of vacuum rather than a loss of vacuum. In addRibas poles in the comple¥ plane,
located at the complex zeros of the partition function (Bishzeros). We discuss the relevance
of these singularities for lattice perturbation theory. fvesent new methods to locate Fisher’s
zeros using numerical values for the density of stat8lli2) andU (1) pure gauge theory. We
briefly discuss similar issues f@(N) nonlinear sigma models where the local integrals are also
over compact spaces.
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1. Introduction

Dyson instability [1, 2] - the catastrophe happening when gbange the sign & in QED
- is often invoked to limit the validity of perturbation thgoand justify the factorial growth of
the perturbative coefficients. In the functional integ@nfiulation of scalar models, this type of
instability is related to large field configurations [3, 4].

For lattice models with compact field integration (nonlinsigma models over compact mani-
folds and lattice gauge theories (LGT) with compact grouipe large field problem is in principle
absent. Fog? < 0, the partition function is well defined and the change ofi sifjg® appears as a
mere change in vacuum rather than a catastrophic insyallan this explain the apparent power
growth (rather than a factorial growth) observed in pewtive series for the average plaque®e
in Refs. [5, 6, 7, 8]? These series are consistent with thetenge of Fisher's zeros (zeros of the
partition function in the complex coupling plane) close hte teal axis [9]. It seems clear that a
complete knowledge of the location of the Fisher’'s zero waqrbvide a compete understanding
of the complex singularities d?. The volume dependence of these zeros also provides importa
information regarding the order of possible transitionsherabsence thereof [10, 11].

In these proceedings, we report recent results concerhewgtquestions. Dyson instability is
reviewed in Sec. 2 in the context of LGT. New “topological” tmeds to locate Fisher’s zeros in
SU(2) andU (1) using numerical calculations of the density of states [#2 ate discussed in Sec.
3. Similar questions fo®O(N) sigma models in the complex t' Hooft coupling plane are byiefl
discussed in Sec. 4. Details can be found in a recent prdfBht

2. Dyson’sinstability ver sus compact integration

Dyson’s argument goes as follows [1, 2]. Suppose that a palyguantity in QED can be
calculated as a perturbative serfeé&?®) = ag+a;€? + ... . If we assume that the series has a finite
radius of convergence, then, fet sufficiently small, we can interprét(—|€?|) as the value of this
guantity in a fictitious world where same charge particléset. But in this fictitious world, every
physical state is unstable. So, the radius of convergermards Quoting the author “The argument
[...] is lacking in mathematical rigor and in physical pson. It is intended to be suggestive, to
serve as a basis for further discussions".

The connection between asymptotic series and the problamegfrating large fields contri-
butions can be understood with this very simple example
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The sum and the integration have been interchanged iledaie peak of the integrand of tlygth
order term of the r.h.s is reached whgh= 4q. The approximation o * ¢ by an expansion of
orderqin A ¢ is good provided thak ¢* << g, but at the peak of the integrang’ = 160 and we
needA 1697 << g, which fails forq large enough. On the other hand, if we introduce a field cutoff
as the order increases, at some order, the peak moves oofdite integration range and there
is no factorial growth. The general expectation is that féinde lattice, the partition functio@
calculated with a field cutoff is convergent and4n has a finite radius of convergence controlled
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by the zeros of the partition function. The field cut@ffais an optimization parameter fixed using
strong coupling [4], for instance.

A fact that is obvious but which importance regarding wealipdimg expansions may have
been overlooked is that lattice gauge theories wittbmpactgroup and nonlinea®(N) sigma
models have duild-in large field cutoff In lattice gauge theory, the group elements associated
with the links are integrated witdU, the compact Haar measure. Our notations are as follows:
N; is the number of colorsS= 3 ;54 (1 — (1/Nc)ReTUp)) and B = 2N¢/g?. The number of
plaquettes is denoted, = L°D(D —1)/2 . The average plaquett®(B) = (1/.4;) (S) will be
our main object of study. The partition functi@ig) is the Laplace transform af(S), the density
of states:

7(B) = /0 TS (S e PS 2.2)
with

|‘|/du. (S— Z (1/N)ReT(Up))) . 2.3)

Assuming that In§(S)) is extensive we can write
n(S) = e’ &%) (2.4)

It is important to notice that at finite volum&nay is finite. For instanceSmax= 2.4, for SU(2N)
and 3% for SU(3). In the strong coupling expansion, we expand in powgB:0Z = S7_0z,8"
with |z,| < $,5/N!, SO at finite volumeZ is an analytical function, not only on the negative real
axis, but over the entirg plane.

On the other hand, it is possible to show that$af(2N) on even lattices [16]

Z(—B) =e#"Z(p). (2.5)

Consequently,
n24,—S =n(S and P(B)+P(—B)=2 (2.6)

Sincelimg_, .,P(B) = 0, P has a discontinuity a’ = 0 and a regular series féraboutg? = 0 is
not possible. However, it does not necessarily mean thatdties has factorial growth.

It is useful to consider first the case of a sin§E(2) plaquette [17]. In that case(S) =
%\ /S(2—9) (invariant undeS— 2—S). The large order of the weak coupling expangba> +oo
is determined by the behavior ofS) nearS= 2, itself probed wheif — —c in agreement with
the common wisdom that the large order behavior of weak cogigeries can be understood in
terms of the behavior at small negative coupliRd2 — Sis then expended abo6t= 0 (radius of
convergence = 2). This yields tlsenvergenexpansion

Z(B) (BT[) 3/221/22(2B) I%/Ozpdtettl+l/2 (27)

As expected this is a not a regular series in the sense thétdb#iicients” of 3~' depend or, but
in away that is invisible in perturbation theory. The crlisizp is to gef3-independent coefficients
by neglecting the missing tails of integration.

.ZB »00
/ dte 't +/2 ~ / dte t'*Y2 L O(e™%#) (2.8)
0 0



Dyson'’s Instability in Lattice Theory Y. Meurice

which in turn creates a factorial growth of the coefficieriifie peak of the integrand crosses the
boundary near order® Dropping higher order terms (than order2f3) agrees with the rule of
thumb (minimizing the first contribution dropped). The noerturbative part can be fully recon-
structed (higher orders + tails) [18]. Faf lattices, the crossing should be near ordgr %,
Non-perturbative effects should be explainable by therdmrtions neaiSnhax. We plan to study
this question on small lattices.

3. Fisher’szeros from the density of states

The poles oP are located at the Fisher’s zeros. At finite volume, we exjiexte zeros to be
isolated in thgB plane. It seems plausible that the zeros will accumulategdioes going through 0
in the 1/ plane as they do for Bessel functions. It is possible tongSeto calculateZ at complex
B. The calculation oh(S) for SU(2) is discussed in Ref. [12]. Additional checks were made by
calculating the first three momentsmfS). ForU (1) lattice gauge theory, multicanonical methods
relying on the Biased Metropolis-Heatbath Algorithm [133m used [14]. Using thid (1) density
of states, we have calculated the plaquette distributitculzdied at fixed3 and checked that there
is an approximately symmetric double peak n@ar 0.979 for a 4 lattice.

For bothU (1) andSU(2) on a 4 lattice, the numerical calculation @f8) with ImgB ~ 0.2 is
difficult becauseB is multiplied by .4}, and the integrand oscillate rapidly. A preliminary idea of
the distribution of zero can be obtained using semi-classitethods. Using the “color entropy”
f(s) defined in Eq. (2.4), the saddle point of the integral ispagiven by solvingf’(sp) = 3.

Z becomes a Gaussian integral with correction of orglélr/ 7, as long aRef’(s)) < 0. As a
Gaussian density of states has no complex zeros [19], itSetwar that zeros should appear in
regions of theB plane corresponding to regions of teelane such thaRef’(sy) > 0. Using
Chebyshev approximations éfs), we have constructed the boundaRe(f’(s) = 0). The results

are shown in Fig. 1. The boundary form narrow tongues endirrgcamplex zeros of”. These
complex zeros are then mapped in fhplane usingf’. Their number depends on the degree of the
polynomial approximation, but the general shape is robndeuchanges in the degree. It appears
that in the case dBU(2) the images in th@ plane are never on the real axis in contrast to the case
of U(1).

New methods have been developed to locate the Fisher zéroa(]L Given the fact thaf is
an entire function in th@ plane, and tha® = —(dZ/df3)/Z, the worse thing that can happenRo
is thatZ has a zero of ordek, say atfy. Then(dz/dB)/Z ~k/(B — o) for B ~ Bo. If we now
integrate over a closed contdOr

(i2m) 2 }[c dB(dz/dB)/Z — an(c:) , (3.1)

whereny(C) is the number of zeros of ord&rinsideC . This allows us to monitor the accuracy of
the calculation. We need to check that in good approximatios real part is an integer and the
imaginary part is zero. This is illustrated in Fig. 2 for ateewular contour of variable height in
the 3 plane. Despite these encouraging results, there remaendepce on the interpolation or fit
used to evaluaté (s) numerically. Resolving this issue should allow us to findtérsize scaling
for the zeros as discussed in Refs. [10, 11].
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Figure 1: Top: complex zeros and zeros of the real part’tfs) in the complexs plane with 40 Chebyshev
polynomials on 4 for SU(2) (left) andU (1) (right). Bottom: f’(s) evaluated at the complex zerosf(s)
shown on the previous figure f&U(2) (left) andU (1) (right).
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Figure2: Re(left) andIm (right) part of 3, nk defined in Eq. (3.1) for a rectangular contour with 2
ReB3 < 2.3 and 0< Imp < y with a variabley, for SU(2) on a 4 lattice. Two independent numerical values

of n(

S) were used.
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Figure3: Left: images in the\! plane of lines of constant imaginary part 2.25, 1.75, 1.26,0.25, -0.25,
....,-2.25 in the complex mass gap plane and of the singolatp(red dots) for a 8x8 lattice. Right: Fisher
zeros forN = 2 (blue) and images of singular points (red).

4. 2—D O(N) nonlinear sigma models

The nonlinearO(N) sigma models on even cubic lattices have similar propeureter the
exchange of the sign of the coupling, nam&ly-g?] = e*°-°/9°Z[g?|. The complex singularities
of the average energy in 2 dimensions, for complex 't Hooftptimg A' = g%N have been studied
in the largeN limit . Details can be found in a recent publication [15]. Aildhg difference with
the linear model is the absence of cut along the negativeasésl It was argued that the Fisher’s
zeros can only be inside a clover shaped region of the complpkane or equivalently outside of a
region delimited by 4 approximate hyperbolas with asyngstain the boundary of a cross of width
0.5 centered at the origin in th¢ A plane. The argument holds for lartyeand large volume. This
limit is being studied using exact results at finNeand finite volume. The graphs of Fig. 3 made
with N = 2 on a & lattice can be compared with the corresponding ones in RBf. [

5. Conclusions

For pure gauge models with compact groups, there is no logzsooium Whergg — —g%, but
only a change of vacuum. The discontinuity of the plaquetdtbifis the existence of a converging
perturbative series but does not dictate the large ordexni@h Reliable methods to locate Fisher’s
zeros are in progress. Non-perturbative effects shouldt®umtable by modified expansions. New
data for perturbative coefficients should help in this task .
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