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1. Introduction

In two Euclidean dimensions the eigenvalue distribution of the SU(N) Wilson matrix associ-
ated with a non-selfintersecting loop undergoes a phase transition in the infinite-N limit as the loop
is dilated [1]. This phase transition has universal properties shared across dimensions and across
analog two-dimensional models [2, 3]. Thus, a detailed understanding of the transition region in
2D is of relevance to crossovers from weakly to strongly interacting regimes in a wide class of
models based on doubly indexed dynamical variables with symmetry SU(N).

We are focusing on the eigenvalues of the Wilson loop. The associated observables are two
different functions ρ true

N (θ), ρ
sym
N (θ) of an angular variable θ . At infinite N the two functions have

identical limits: ρ true
∞ (θ) = ρ

sym
∞ (θ)≡ ρ∞(θ).

For a specific critical scale, the nonnegative function ρ∞(θ) exhibits a transition at which a
gap centered at θ = ±π , present for small loops, just closes. This transition was discovered by
Durhuus and Olesen in 1981 [1].

2. Eigenvalue densities

The probability density (with respect to the Haar measure) for the Wilson loop matrix W is
given by

PN(W, t) = ∑
r

drχr(W )e−
t

2N C2(r) (2.1)

with t = λA , where λ = g2N is the standard ’t Hooft coupling and A denotes the area enclosed by
the loop. The sum over r is over all distinct irreducible representations of SU(N) (with dimension
dr and quadratic Casimir C2(r)). χr(W ) is the character of W in the representation r.

Density functions are obtained from

Gtrue
N (z) =

1
N

〈
Tr

1
z−W

〉
=

1
N

∂

∂ z
〈logdet(z−W )〉, (2.2)

Gsym
N (z) =− 1

N
∂

∂ z
log〈det(z−W )−1〉 (2.3)

through (` = true,sym)

ρ
`
N(θ) = 2 lim

ε→0+
Re
[
eiθ+εG`

N(eiθ+ε)
]
−1 . (2.4)

Only ρ true
N has a natural interpretation at finite N, it literally is the eigenvalue density. ρ

sym
N is

determined by the averages of the characters of W in all totally symmetric representations. The
function is monotonic on each of the segments (−π,0) and (0,π). It turns out that the appropriate
area variable for ρ

sym
N is not t but T = t(1−1/N) [4]. When ρ

sym
N (θ ,T ) is compared to ρ true

N (θ , t),
the 1/N correction in t relative to T has to be taken into account.

The infinite-N critical point is at T = 4. For T > 4, ρ
sym
N (θ ,T ) approaches ρ∞(θ ,T ) by power

corrections in 1/N [4]. For T < 4, ρ∞(θ ,T ) is zero for |θ | > θc(T ), where 0 < θc(T ) < π and
θc(4) = π (cf. Fig. 1). In this interval ρ

sym
N (θ ,T ) approaches zero by corrections that are exponen-

tially suppressed in N.
The true eigenvalue density ρ true

N (θ , t) has N peaks (in the interval [−π,π]) and oscillates
around ρ

sym
N (θ ,T ) (cf. [5]).
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Figure 1: Plots of ρ
sym
N (θ ,T ) for T = 2 (left), T = 5 (right), and N = 3,5,10,25,50,100,250 together with

ρ∞(θ ,T ).

3. Integral representations

The density ρ true
N can be obtained from the expectation value of [5]

R(u,v,W ) =
det(1+uW )
det(1− vW )

=
N

∑
p=0

∞

∑
q=0

upvq
χ

A
p (W )χ

S
q (W ) (3.1)

with |v| < 1. χA
p (W ) (resp. χS

q (W )) denotes the character of W in a totally antisymmetric (resp.
symmetric) representation. When we set u =−v+ε and expand to linear order in ε , the LHS reads

R(−v+ ε,v,W ) = 1− ε Tr
1

v−W † . (3.2)

After decomposing the tensor product pA⊗ qS into irreducible representations, we obtain for the
expectation value of the trace (due to character orthogonality)

R̄(v)≡
〈

Tr
1

v−W †

〉
=−

N−1

∑
p=0

∞

∑
q=0

(−1)pvp+qe−
t

2N C(p,q)d(p,q) , (3.3)

where C(p,q) and d(p,q) denote the value of the quadratic Casimir and the dimension of the
irreducible representation identified by the Young diagram

1 2 q
1

p

, (3.4)

C(p,q) = (p+q+1)
(

N− p+q+1
N

+q− p
)

, (3.5)

d(p,q) = dA(p)dS(q)
(N− p)(N +q)

N
1

p+q+1
, (3.6)

dA(p) =
(

N
p

)
, dS(q) =

(
N +q−1

q

)
. (3.7)

We can exactly calculate sums of the form (with |z|< 1)

N−1

∑
p=0

updA(p)(N− p) = N(1+u)N−1 ,
∞

∑
q=0

zqdS(q)(N +q) =
N

(1− z)N+1 . (3.8)
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To factorize the sums over p and q in (3.3), we first write

1
p+q+1

=
∫ 1

0
dρρ

p+q . (3.9)

The t-dependent weight factor is the exponent of a bilinear form in p and q (given by (3.5)). By a
Hubbard-Stratonovich transformation the dependence on p and q can be made linear. Performing
the (independent) sums over p, q then leads to [5]

R̄(v) =−N2

t
e−

t
2

∫ ∫
∞

−∞

dxdy
2π

∫ 1

0
dρ e−

N
2t (x

2+y2)+ 1
2t (x+iy)2− 1

2 (x−iy)

[
1− vρe−x−t/2

]N−1[
1− vρeiy−t/2

]N+1 (3.10)

(valid for |v|< 1). Now the entire dependence on N is explicit. The infinite-N limit of ρ true
N can be

obtained from this integral representation by using a saddle-point approximation for the integrals
over x and y (cf. Sec. 5).

4. Saddle-point analysis for ρsym

An integral representation for ψ(z) = 〈det(z−W )−1〉 (which determines ρsym) is obtained in
a similar manner [4]. In this case, only a single integral is needed (valid for |z|> 1),

ψ(z) = e
NT
8

√
N

2πT

∫
∞

−∞

dwe−
N
2T w2

(
ze−i w

2 − ei w
2

)−N
. (4.1)

We set z = eiθ+ε and take the limit ε → 0+ at the end. The integrand is exp(−N f (w)) with

f (w) =
w2

2T
+ log

(
ze−i w

2 − ei w
2

)
. (4.2)

Singularities of the integrand are located on the line Imw =−ε < 0, which means that the integra-
tion path (along Imw = 0) can be shifted upwards in the complex plane.

The saddle point equation, f ′(ws) = 0, can be written as

e−TU(θ ,T )U(θ ,T )+1/2
U(θ ,T )−1/2

= eε+iθ (4.3)

with ws = iTU(θ ,T ) = iT (Ur(θ ,T )+ iUi(θ ,T )). Taking the absolute value leads to

U2
i = Ur coth(TUr + ε)−U2

r −
1
4

. (4.4)

This equation describes one or more curves in the complex-U plane (examples are shown in Fig. 2)
on which the saddle points have to lie (it has been previously investigated in [6] for ε = 0). For a
given value of θ , the saddles are isolated points on these curves.

For each θ there is always one (and only one) saddle point on the closed curve encircling U = 1
2

(cf. Fig. 3). The integration contour (along the imaginary-U axis) can be smoothly deformed to go
through this saddle along a path of steepest descent (no singularities are crossed).
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Figure 2: Examples of the contours in the complex-U plane described by equation (4.4) for T = 3 (left),
T = 4 (middle), and T = 5 (right). The red dashed curves are for small ε > 0, while the black solid curves
are for ε = 0. For our saddle-point analysis we keep ε > 0.
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Figure 3: Example for the location of the saddle
points and the deformation of the integration contour
in the complex-w plane for T = 5 and θ = 3 (with
small ε > 0). The thin solid lines are lines of con-
stant Re f (w), the arrows point in the direction of in-
creasing Re f (w). On each of the closed orange curves
there is one saddle point (red dot and blue dot), and on
the open orange curve there are infinitely many sad-
dle points, but only one of them in the region shown
in the plot (green dot). The thick blue curve is the in-
tegration path along the direction of steepest descent
through the relevant saddle point.

The Gaussian integral which results from expanding the exponent f (w) to quadratic order
around ws leads to

ρ
sym
N (θ ,T ) = 2Re

[
U
(

1+
1
N

T (1/4−U2)
[1−T (1/4−U2)]2

)]
+O(1/N2) , (4.5)

where U = U(θ ,T ) is the saddle point located on the closed curve around U = 1/2. Higher-order
terms in the 1/N expansion can be obtained by expanding the exponent to higher powers in w−ws.

The leading-order result is

lim
N→∞

ρ
sym
N (θ ,T ) = 2ReU(θ ,T ) , (4.6)

which equals ρ∞(θ ,T ) of Durhuus and Olesen [1] since U(θ ,T ) satisfies (4.3).
For T > 4, we find that ReU(θ ,T ) is always non-zero (cf. right plot in Fig. 2). ReU(θ ,T )

is also non-zero for T ≤ 4 and |θ | < θc(T ). For T ≤ 4 and |θ | = θc(T ) we have f ′′(ws) = 0, i.e.,
the first-order correction diverges and the Gaussian approximation does not work. For T ≤ 4 and
|θ | > θc(T ) the saddle point U(θ ,T ) is purely imaginary (cf. left plot in Fig. 2) so that both the
leading order and the 1/N term are zero. In the region |θ | ≥ θc(T ) ρ

sym
N is exponentially suppressed

in N and the study of the large-N asymptotic behavior requires more work.
In Fig. 4 we show examples for the 1/N corrections to ρ∞(θ ,T ) for N = 10 and T = 2 and 5.
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Figure 4: Examples for the 1/N corrections to ρ∞(θ ,T ) for N = 10, T = 2 (left), and T = 5 (right). Shown
are the exact result for ρ

sym
N (θ ,T ) (blue dashed curve), the infinite-N result ρ∞(θ ,T ) (red dotted curve),

and the asymptotic expansion of ρ
sym
N (θ ,T ) up to order O(1/N) (black solid curve). We observe that the

asymptotic expansion converges rapidly for small |θ | and more slowly for larger |θ |.

5. Saddle-point analysis for ρ true

The infinite-N limit of the true eigenvalue density ρ true can be obtained from a saddle-point
approximation of the integral (3.10), which can be written in the form

R̄(v) =−N2

t
e−

t
2

∫ ∫
∞

−∞

dxdy
2π

∫ 1

0
dρ e−

N
2t (x2+y2)+ 1

2t (x+iy)2− 1
2 (x−iy)

× e(N−1) log(1−vρe−x−t/2)−(N+1) log(1−vρeiy−t/2) (5.1)

(valid for |v| < 1; we set v = eiθ−ε and take the limit ε → 0+ after deforming the integration
contour). We first approximate the integrals over x and y and integrate over ρ at the end. At
leading order, the integrals (over x and y) decouple and can be approximated independently. The
coefficients of −N in the exponent are

f̄ (y) =
1
2t

y2 + log
[
1− vρeiy− t

2

]
, (5.2)

f̃ (x) =
1
2t

x2− log
[
1− vρe−x−t/2

]
=− f̄ (ix) . (5.3)

Let us first consider the integral over y. Substituting y = w− it/2 leads to the integrand for ψ

in (4.1) (with z→ 1/vρ). The integration over w is now along the line from−∞+ it/2 to +∞+ it/2
(since there are no singularities between this line and the real-w axis, the integration contour can
be shifted to the real-w axis). The saddle-point equation reads (with ys = it(U−1/2))

e−tU U +1/2
U−1/2

=
1

vρ
. (5.4)

The only difference to Eq. (4.3) is that the absolute value of the RHS can take any value in the
interval 0 ≤ |vρ|< 1 (for ρ = 1, we are in the situation of Sec. 4). Numerical analysis shows that
the integral can again be approximated by one single saddle point, y0(θ , t,ρ). The relevant saddle
point is again located on a closed curve around U = 1/2 (corresponding to y = 0). This curve
shrinks with decreasing ρ (cf. Fig. 5).

Due to f̃ (x) = − f̄ (ix), the saddle points of the x- and y-integrals are related by a rotation of
π/2 in the complex plane, xs =−iys. The relation to U is xs = t(U−1/2), the integration path for
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Figure 5: Contours of solutions of equation (5.4) in the complex-U plane at t = 3 (left), t = 4 (middle), and
t = 5 (right) for ρ = 1 (black, solid), ρ = 0.9 (red, dashed), ρ = 0.6 (green, dot-dashed), and ρ = 0.3 (blue,
dotted).

the x-integral is along the real-U axis. By analyzing the directions along which the phase of the
integrand is constant, we find that the integration contour can always be deformed to go through
the (single) saddle point in the right half-plane (on the curve around U = 1/2) in the direction of
steepest descent. Depending on ρ , v, and t, there is either one or no additional saddle point on the
contour(s) in the left half-plane through which we can also go in the direction of steepest descent,
but the contribution of this additional saddle point (if there is one) is exponentially suppressed.
Therefore the relevant saddle point is x0 = −iy0, i.e., both integrals can be approximated by a
single saddle point. An example for the location of the saddle points and the deformation of the
integration path is shown in Fig. 6.

-1.0 -0.5 0.0 0.5 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 6: Example for the location of the saddle
points and the deformation of the integration path in
the complex-U plane for t = 5 and ρ = 0.95. The
dashed black curves (two closed, one open) are the
curves on which all saddle points have to lie. In this
example θ = 3.0. On each of the closed curves there
is one saddle point (red dot and blue dot), and on
the open curve there are infinitely many saddle points,
but only one of them in the region shown in the plot
(green dot). The thin solid lines are lines of constant
Re f̃ (x) and Re f̄ (y). The arrows point in the direc-
tion of increasing Re f̃ (x) or decreasing Re f̄ (y). The
dashed blue curve is the integration path for the y-
integral along the direction of steepest descent. The
solid red-blue curve is the integration path for the x-
integral along the direction of steepest descent.

Combining the saddle-point approximations for the x- and y-integrals leads to (x0 = x0(θ , t,ρ))

R̄(v) =−N
t

∫ 1

0
dρ

(t + x0)
2

t + x0 (t + x0)
e−x0− t

2 . (5.5)

By differentiating the saddle-point equation with respect to ρ we find that the integrand is just
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v−1 ∂x0
∂ρ

and therefore

R̄(v) =−N
tv

∫ 1

0
dρ

∂x0

∂ρ
=−N

tv
[x0(θ , t,ρ = 1)− x0(θ , t,ρ = 0)] . (5.6)

The eigenvalue density at infinite N is determined by the locations of the saddle points at ρ = 1
and ρ = 0 only. Since x0(θ , t,ρ = 0) = 0, we obtain

lim
N→∞

ρ
true
N (θ , t) = 2ReU(θ , t,ρ = 1) = lim

N→∞
ρ

sym
N (θ ,T ) , (5.7)

which confirms that the infinite-N limit of the true eigenvalue density is given by ρ∞(θ , t) of
Durhuus and Olesen [1].

6. Conclusions

The probability distribution of Wilson loops in SU(N) YM in two Euclidean dimensions can
be written as a sum over irreducible representations (where only dimension, second-order Casimir,
and character of W enter). This allows for the derivation of integral representations for different
density functions (including the true eigenvalue density), which have the same infinite-N limit.
These integral representations, where N enters only as a parameter, are exact for any finite N.
Results at infinite N can be obtained by saddle-point approximations. Next-order terms in an
expansion in 1/N give reasonable results in the interval where ρ∞(θ) > 0. More work is needed to
get finite-N effects where ρ∞(θ) = 0 and corrections are exponentially suppressed in N.
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