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of scaling violation observed on the isotropic lattice is drastically reduced as the anisotropy in-
creases; namely, the system approaches the Hamiltonian limit. In the infrared region, the trans-
verse gluon propagator exhibits a turnover and the temporal gluon propagator shows divergent
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1. Introduction

Coulomb gauge provides a very clear picture of color confinement. Coulomb gauge is a physi-
cal gauge in the sense that the color Gauss’ law can be formally solved, and only transverse degrees
of freedom appears as dynamical degrees of freedom. The striking feature of Coulomb gauge is
that an instantaneous interaction shows up in the Hamiltonian, which is requisite for color confine-
ment. In the Gribov-Zwanziger scenario, the path integral is dominated by the configurations near
the Gribov horizon where the lowest eigenvalue of the Faddeev-Popov (FP) ghost operator vanishes
[1]. This results in an enhancement of the near-zero modes of the ghost operator, and it has been
confirmed by the lattice simulations [2, 3]. Accordingly, the color-Coulomb instantaneous interac-
tion becomes a confining interaction. The color-Coulomb potential can be obtained by measuring
the correlator of the temporal link variable at fixed time, and lattice QCD simulations exhibit that
the color-Coulomb potential rises linearly at large distances and its string tension is larger than the
string tension of the static Wilson potential [4, 5, 6, 7], which is expected from the Zwanziger’s
inequality [8]. On the other hand, the color-Coulomb potential has been evaluated by inverting the
FP ghost matrix, and it has been shown that the color-Coulomb string tension almost saturates the
Wilson string tension [9].

The transverse gluon propagator is expected to be suppressed in the infrared (IR) region due
to the proximity of the Gribov region in the IR direction in the Gribov-Zwanziger scenario [10].
The instantaneous transverse gluon propagator has been measured by Monte Carlo simulations
[11, 12, 13, 14], and recent studies have revealed that it shows scaling violation [13, 14]; namely,
the gluon propagator calculated at different lattice couplings does not fall on top of a single curve
after multiplicative renormalization.

In order to circumvent the problem of scaling violation, the authors of [13] have measured the
unequal-time gluon propagator

Dtr(~p, p4) = 〈A(~p, p4)A(−~p,−p4)〉 (1.1)

and extracted the equal-time propagator Dtr(|~p|) by eliminating the p4 dependence of the unequal-
time propagator. It has been concluded that Dtr(|~p|) is multiplicatively renormalizable in the Hamil-
tonian limit and well fitted with the Gribov-type form of the propagator. The method was applied
only to the transverse gluon propagator and it was not studied for the time-time component of the
equal-time gluon propagator if scaling violation can be solved by this procedure.

In [14], a new momentum cut is introduced in addition to the cone cut and the cylinder cut, by
which high momentum data that suffer from discretization errors are excluded from the analysis of
the instantaneous propagators. It has been shown that this procedure successfully reduces scaling
violation for the transverse gluon propagator while it fails for the time-time component of the gluon
propagator.

The problem of scaling violation of the instantaneous propagator can be seen even at the tree
level on a finite temporal lattice spacing (we refer to a forthcoming paper for an explicit calcula-
tion). The reason is that the energy integral does not run from −∞ to ∞ but from −π/aτ to π/aτ

on a finite lattice, and this introduces the spurious |~p| dependence on the free equal-time propaga-
tor. Therefore, we expect that the instantaneous propagator is multiplicatively renormalizable in
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the Hamiltonian limit ξ = as/aτ → ∞. To make this point clear, we calculate the transverse and
temporal components of the instantaneous gluon propagator on anisotropic lattices.

2. Lattice setup and observables

The lattice configurations are generated by the heat-bath Monte Carlo technique with the stan-
dard Wilson plaquette action,

S =
β

ξB
∑

n,i< j≤3
ReTr(1−Ui j(n))+βξB ∑

n,i≤3
ReTr(1−Ui4(n)). (2.1)

Here Uµν(n) indicates the plaquette operator, and β = 2Nc/g2 is the lattice coupling. On the
isotropic lattice, the bare anisotropy ξB is 1 and the action can be written in a familiar form

S = β ∑
n,µ<ν

ReTr(1−Uµν(n)). (2.2)

ξB differs from the renormalized anisotropy ξ which is defined as the ratio of the spatial lattice
spacing to the temporal lattice spacing. The ratio of ξB and ξ can be determined non-perturbatively
by matching the spatial and the temporal Wilson loop on anisotropic lattices. We use the relation
obtained by Klassen for the range 1≤ ξB ≤ 6 and 5.5≤ β ≤ ∞ [15]:

ξ

ξB
= 1+

(
1− 1

ξ

)
η(ξ )

6
1+a1g2

1+a0g2 g2, (2.3)

where a0 =−0.77810, a1 =−0.55055, and

η(ξ ) =
1.002503ξ 3

B +0.39100ξ 2
B +1.47130ξB−0.19231

ξ 3
B +0.26287ξ 2

B +1.59008ξB−0.18224
. (2.4)

We adopt the values of the lattice spacing given in [16] for ξ = 2 and in [17] for ξ = 4, where the
static quark potential was measured to set the scale. For the isotropic lattice, the scale is set by
using Necco-Sommer scaling relation [18]. In our simulations, the first 5000 sweeps are discarded
for thermalization, and we measured the equal-time gluon propagator for 40 − 100 configurations,
each of which is separated by 100 sweeps. All the lattice parameters are given in Table 1.

In Coulomb gauge the transversality condition

∂iAi(~x, t) = 0 (2.5)

is imposed on the gauge fields at each time slice, where i runs from 1 to 3. On a lattice, gauge
configurations satisfying Coulomb gauge condition can be obtained by minimizing the functional

FU [g] =
3

∑
i=1

∑
~x
ReTr

(
1−Ug

i (~x, t)
)
, (2.6)

defined on each time slice. Here Ug
i (~x, t) = g(~x, t)Ui(~x, t)g†(~x+ î, t) is the gauge-rotated config-

uration. The functional derivative of Eq. (2.6) with respect to g reproduces the Coulomb gauge
condition in the continuum limit with the linear definition of the gauge field,

Alat
µ (~x, t) =

Uµ(~x, t)−U†
µ(~x, t)

2iga

∣∣∣∣∣
traceless

. (2.7)
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ξ = as/aτ L3
s ×Lτ β ξB a−1

s [GeV] as [fm] V [fm4] # of confs.

1

324 5.70 1 1.160 0.1702 5.454 100
484 : : : : 8.174 40
324 5.80 : 1.446 0.1364 4.374 100
324 6.00 : 2.118 0.0932 2.984 100
484 : : : : 4.474 40
324 6.20 : 2.914 0.0677 2.174 100

2

163× 32 5.80 1.674 1.104 0.1787 2.864 100
243× 48 : : : : 4.294 100
163× 32 6.00 1.705 1.609 0.1227 1.964 100
243× 48 : : : : 2.944 100
163× 32 6.10 1.718 1.889 0.1045 1.674 100
243× 48 : : : : 2.514 100

4

163× 64 5.75 3.072 1.100 0.1794 2.874 50
243× 96 : : : : 4.314 50
323× 128 : : : : 5.744 50
483× 192 : : : : 8.614 50
163× 64 5.95 3.159 1.623 0.1216 1.954 50
243× 96 : : : : 2.924 50
323× 128 : : : : 3.894 50
483× 192 : : : : 5.844 50
163× 64 6.10 3.211 2.030 0.0972 1.564 50
243× 96 : : : : 2.334 50
323× 128 : : : : 3.114 50
483× 192 : : : : 4.674 50

Table 1: Simulation parameters to calculate the equal-time gluon propagator.

The Coulomb gauge fixing has been done using iterative method with the Fourier acceleration [19],
and the gauge fixing is stopped if (∂iAi)

2 < 10−14 at each time slice.
We calculate the transverse and time-time component of the equal-time gluon propagator,

Dab
µν(~x−~y) = 〈Aa

µ(~x)A
b
ν(~y)〉= Dab

µν(~x−~y), (2.8)

in the momentum space,

Dab
i j (~p) = δ

ab
(

δi j−
pi p j

|~p|2

)
Dtr(|~p|) (2.9)

Dab
44(~p) = δ

ab Z44(|~p|)
|~p|2

. (2.10)

The gauge field is defined as Eq. (2.7). The dressing function Z44 is constant for |~p| at the tree
level. In the Gribov-Zwanziger scenario, this is expected to diverge in the IR limit resulting in the
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confining behavior of the color-Coulomb potential, which is necessary condition for color confine-
ment in Coulomb gauge QCD [8]. The transverse gluon propagator is expected to be suppressed in
the IR region due to the proximity of the Gribov region [10].

3. Simulation results: transverse gluon propagator
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Figure 1: The equal-time transverse gluon propagator on the isotropic lattice (top left), on the anisotropic
lattices with ξ = 2 (bottom left), and with ξ = 4 (top right). The results for the isotropic lattice and the
anisotropic lattice with ξ = 4 on large lattice volume are drawn together in one figure for direct comparison
(bottom right). The cone cut and the cylinder cut are applied and the propagator is renormalized to unity at
p = 2 [GeV].

The top left panel of Fig. 1 shows the transverse gluon propagator on the isotropic lattice at
various lattice couplings, β = 5.7,5.8,6.0,6.2. The cone cut and the cylinder cut are applied [20]
and the propagator is renormalized such that Dtr(|~p|= 2 [GeV]) = 1. We see that the data points at
different lattice couplings cross at the renormalization point |~p| = 2 [GeV] and deviate from each
other both at small and large momenta, as has been observed in [14].

The simulation results on the anisotropic lattice are drawn in the left bottom (ξ = 2) and the
right top (ξ = 4) panel of Fig. 1. On the anisotropic lattice with ξ = 2, scaling violation becomes
moderate compared to the isotropic result, although small deviations among the data points for
different lattice couplings can be seen. Further increase of ξ leads to a nice scaling behavior and

5



P
o
S
(
L
A
T
2
0
0
9
)
2
3
0

Coulomb gauge gluon propagator on anisotropic lattices Yoshiyuki Nakagawa

the data points for ξ = 4 almost fall on top of one curve, indicating that the equal-time gluon
propagator is multiplicatively renormalizable in the continuum limit (or in the Hamiltonian limit
ξ → ∞). Accordingly, our results on the anisotropic lattice support our expectation that scaling
violation observed in the equal-time transverse gluon propagator disappears in the limit ξ → ∞.

In the right bottom panel of Fig. 1, the instantaneous transverse gluon propagator on the spatial
lattice extent L = 48 is plotted both for the isotropic lattice and the anisotropic lattice with ξ = 4.
We observe that the propagator has a maximum at p = 0.4 ∼ 0.5 [GeV] irrespective of the lattice
coupling and the anisotropy, and it decreases with the momentum in the IR region.

4. Simulation results: time-time component of the gluon propagator
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Figure 2: The dressing function of the time-time component of the gluon propagator on the isotropic lattice
(left), and on the anisotropic lattice with ξ = 4 (right). The cone cut and the cylinder cut are applied and the
dressing function is renormalized to unity at p = 2 [GeV].

The dressing function of the time-time component of the gluon propagator is shown in Fig. 2
for the isotropic lattice (left panel) and the anisotropic lattice with ξ = 4 (right panel). On the
isotropic lattice, Z44(|~p|) shows scaling violation and the deviation of the two curve is pronounce in
the IR region. Although the Gribov-Zwanziger scenario predicts that the temporal gluon propagator
diverges stronger than the simple pole 1/|~p|2, the numerical result shows that it bends down at small
momenta for β = 5.7.

On the anisotropic lattice, the dressing function shows a much better scaling behavior than
that on the isotropic lattice. Although the small deviation can be seen both in the IR and ultraviolet
region, one can expect that the scaling behavior is completely recovered in the Hamiltonian limit.
Moreover, we find that the IR behavior of Z44 on the anisotropic lattice is completely different from
that on the isotropic lattice. For the isotropic case, we see that the dressing function bends down at
small momenta at β = 5.7. By contrast, Z44 continues to rise with decreasing the momentum even
for the coarsest lattice data (β = 5.75), and Z44 at available smallest momentum for the anisotropic
case is about 10 times larger than that for the isotropic case. We note that the spatial lattice spacing
for (ξ ,β ) = (4,5.75) is larger than that for (ξ ,β ) = (1,5.70). This implies that Z44 is very sensitive
to the disretization effects, and taking the Hamiltonian limit is crucial to cure scaling violation for
the temporal gluon propagator and to explore the IR divergent behavior in Coulomb gauge QCD.

6



P
o
S
(
L
A
T
2
0
0
9
)
2
3
0

Coulomb gauge gluon propagator on anisotropic lattices Yoshiyuki Nakagawa

5. Summary and conclusion

We calculate the transverse and time-time components of the equal-time gluon propagator
both on the isotropic and the anisotropic lattices. We find that scaling violation observed on the
isotropic lattice is drastically reduced by calculating the propagator on the anisotropic lattices, i.e.,
by getting close to the Hamiltonian limit. In the IR region, the transverse gluon propagator is
strongly suppressed and shows the turnover at about 500 [MeV]. The time-time gluon propagator
on the anisotropic lattice is much more enhanced in the IR region compared to that on the isotropic
lattice.
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