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We calculate Wilson loops of various sizes up to loop ordern = 20 for lattice sizes ofL4(L =

4,6,8,12) using the technique of Numerical Stochastic Perturbation Theory in quenched QCD.

This allows to investigate the behaviour of the perturbative series at high orders. We discuss three

models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an

assumed power-law singularity and boosted perturbation theory. We have found differences in the

behavior of the perturbative series for smaller and larger Wilson loops at moderaten. A factorial

growth of the coefficients could not be confirmed up ton = 20. From Monte Carlo measured

plaquette data and our perturbative result we estimate a value of the gluon condensate〈α
π GG〉.
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1. Introduction

Since the introduction of the non-perturbative gluon condensate by Shifman, Vainshtein and
Zakharov [1] there have been many attempts to obtain reliable numerical results for this quantity.
Soon it became clear that lattice gauge theory provides a promising tool to calculate it from Wilson
loops. In [2] the plaquette was used whereas larger Wilson loops have been investigated in [3].
From the plaquetteP the non-perturbative gluon condensate〈α

π GG〉 is conventionally derived from
the relation

PMC = Ppert−a4π2

36

[

−b0 g2

β (g)

]

〈
α
π

GG〉 , (1.1)

whereb0 is the first coefficient of theβ -function andPMC is the plaquette measured in Monte Carlo.
In (1.1) it is assumed that the non-perturbative part scaleslike the fourth power of the lattice spacing
a. However, there were speculations that there could be non-perturbative contributions which scale
like a2 [4]. In the last decade the application of Numerical Stochastic Perturbation Theory (NSPT)
[5] pushed the perturbative order ofPpert up to ordern = 10 [6] and evenn = 16 [7]. This strongly
supports to use (1.1) for the determination of〈α

π GG〉.
Besides the determination of〈α

π GG〉 there is a general interest in the behavior of perturbative
series in QCD (for a recent investigation see [8]). Observable quantities can be written as series of
the form

Q∼ ∑
n

anλ n , (1.2)

whereλ denotes some coupling. It is generally believed that these series are asymptotic, and
assumed that for largen the leading growth of the coefficientsan can be parametrized as [9]

an ∼ C1 (C2)
n Γ(n+C3) , (1.3)

i.e., they show a factorial behavior. Using the technique ofNSPT one reaches orders of the per-
turbative series where a possible set-in of this assumed behavior can be tested. There is a recent
paper of Narison and Zakharov [10] where the authors discussthe difference between short and
long perturbative series and its impact on the determination of 〈α

π GG〉.
In this paper we present perturbative calculations in NSPT up to ordern= 20 for Wilson loops

for lattice sizesL4 with L = 4, . . . ,12. The computation forL = 12 were performed on a NEC SX-9
computer of RCNP at Osaka University, all others on Linux/HP- clusters at Leipzig University.
We calculate the Wilson loops in quenched QCD with plaquettegauge action.

2. NSPT calculation up to n = 20

NSPT allows perturbative calculations on a lattice up to loop ordern which never will be
reached by the standard diagrammatic approach. The algorithm is introduced and discussed in
detail in [5, 11] - we will not present it in this paper. We onlywant to point to some essential
topics:

• The computer implementation of NSPT requires the discretization of the so-called (rescaled)
Langevin timeτ

τ → τk = kε/β , k = 0,1,2, . . . .
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(g2 = 6/β is the bare lattice coupling). Practically, this means thatthe corresponding quan-
tities are measured for different small but finiteε . The final result is obtained in the limit
ε → 0. This must be done with great care in order to obtain reliable numeric results.

• The connection to infinite volume is achieved by the limitL→∞ which requires an additional
extrapolation of the corresponding finiteL results.
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Figure 1: Extrapolationε → 0 forW11 for 1-loop (left) and 20-loop (right) forL = 8.

In Fig. 1 we show the extrapolationε → 0 for lattice sizeL = 8 for a plaquette, where we use
a general quadratic ansatz inε for the fitting function.

We write the general expansion of a Wilson loop of sizeN×M in terms of the bare lattice
couplingg as

WNM =
20

∑
n=0

W(n)
NM g2n . (2.1)

Depending on the loop-size(N,M) we found alternating signs for the perturbative coefficientsW(n)
NM

for smallern whereas for largern they turn into a smooth asymptotic behavior. An example is given
in Fig. 2 (left) forL = 12.

A typical extrapolation toL→∞ for the plaquette is shown on the right side of Fig. 2. Bali [12]
has computed one- and two-loop contributions to Wilson loops of various sizes in the standard
diagrammatic approach for finiteL. A comparison of our one- and two-loop NSPT results with his
results is given in Table 1. Based on the results given by Baliwe fixed the functional dependence of
theL → ∞ extrapolation. However, it should be empasized that this extrapolation becomes worse
for larger loop sizes(N,M).

3. Perturbative series at large order

The order of perturbation theory we have reached in our calculations allows to study the large
order behavior and to test some models concerning then−dependence of the coefficients. This is
essential in order to compute the perturbative part of the Wilson loops as precise as possible. In
order not to interfere with possible extrapolation (L → ∞) effects we investigate this for finiteL.
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Figure 2: Coefficients for various Wilson loops (left). Extrapolation L → ∞ for n = 10 (right).

Table 1: Comparison of one- and two-loop results for NSPT and standard approach

WNN L NSPT (1-loop) Bali (1-loop) NSPT (2-loop) Bali (2-loop)

W22 4 −0.87468(13) −0.87500 0.10404(07) 0.10406

6 −0.90752(12) −0.90762 0.11830(10) 0.11837

8 −0.91164(08) −0.91141 0.12008(08) 0.11993

12 −0.91259(03) −0.91261 0.12038(04) 0.12038

W33 6 −1.50088(30) −1.50093 0.60906(34) 0.60866

8 −1.52873(23) −1.52803 0.63693(23) 0.63632

12 −1.53526(47) −1.53533 0.64370(13) 0.64360

W44 8 −2.14128(44) −2.14016 1.52351(70) 1.52331

12 −2.16950(24) −2.16922 1.57178(60) 1.57006

3.1 Heuristic model

In [13] the authors propose to use a series expansion for a quantity which shows a power-like
singularity

W11 ∼ (1−ug2)γ = ∑
n

Γ(n− γ)

Γ(n+1)Γ(−γ)
(ug2)n = ∑

n
cng2n . (3.1)

From (3.1) one derives the ratio of successive coefficientscn as (slightly modified by a parameters
to account for a small curvature)

rn = cn/cn−1 = u

(

1−
1+ γ
n+s

)

. (3.2)
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In a Domb-Sykes plot -rn plotted against 1/n - this is almost a straight line. In Fig. 3 one observes
that rn for W11 follows this simple functional form almost ideally.

However, the corresponding curves for larger Wilson loops of moderate size have a more
pronounced non-linear dependence on 1/n as can be seen in Fig. 3. This suggests to generalize
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Figure 3: Domb-Sykes plot for variousWNM together with their fits (3.3).

ansatz (3.2) by adding an extra power inn (for a detailed discussion see [14])

rn = cn/cn−1 = u
n2 +(s−q−1)n+ t

n(n+s)
. (3.3)

For t = 0 relation (3.3) is identical to (3.2). It gives a hyperbola in a Domb-Sykes plot. In this paper
we assume that the interceptu has a universal value for all loop sizes(N,M). It is determined from
W11 which has been computed most precisely. The other parameters (q,s, t) depend on(N,M). The
corresponding curves are shown in Fig. 3. They are obtained from the fit ansatz (3.3) where the
parameters are determined in the interval 5≤ n≤ 20. In this region the perturbative coefficients
of the considered Wilson loops show a common asymptotic behaviour as can be seen in Figure
2 (left).

There were speculations that already at ordern = 10 the perturbative coefficients show a fac-
torial growth due to renormalon contributions [4, 6] (for a detailed investigation of this point see
also [8]). For the plaquette we plot in Fig. 4 the ratiorn overn for the ansatz (3.2) (HRS) and the
renormalon inspired model as given in [4, 6] (BDMO). We do notobserve a factorial growth, at
least in the regionn≤ 20 and for our lattice sizes.

3.2 Boosted perturbation theory

It is well-known that the bare lattice couplingg is a bad expansion parameter due to lattice
artefacts like tadpoles. There is a hope that by redefining the couplingg into a boosted couplinggb
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Figure 4: Comparison ofrn of the plaquetteW11 for HRS and BDMO models

and the corresponding rearrangement of the series a better convergence behaviour can be achieved.
For the plaquetteP = W11 we use the replacements

g2 → g2
b =

g2

Ppert,b
: Ppert(g,n

⋆) = 1+
n⋆

∑
n=1

W(n)
11 g2n → Ppert,b(gb,n

⋆) = 1+
n⋆

∑
n=1

W(n)
b,11g2n

b , (3.4)

wheren⋆ is the maximal loop order.
Boosted perturbation theory has been applied to improve theperturbative series for the pla-

quette for the first time by Rakow [7]. He showed thatPpert,b(gb,n⋆) reaches a stable plateau much

earlier thanPpert(g,n⋆) as a function ofn⋆. Fig. 5 (left) shows that the boosted coefficientsW(n)
b,11
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Figure 5: Coefficients for naive and boosted LPT (left).P at β = 6.2 as function ofn⋆ (right).

oscillate but rapidly become very small. Of course, one should act with caution in the region ofn
where|W(n)

b,11| ∼ 10−7. The superior convergence behavior for the plaquette is demonstrated in Fig.
5 (right) confirming the result in [7]. The Monte Carlo resultis taken from [15, 16].
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4. Non-perturbative gluon condensate

As discussed in the introduction there are speculations whether the difference∆P= Ppert−PMC

behaves as∼ a2 or ∼ a4. We can check this by plotting∆P versusa/r0 where r0 denotes the
Sommer scale. The functional relation betweenβ and r0/a has been taken from [17]. In Fig. 6
∆P(a/r0) is plotted in the infinite volume limit (L → ∞) for both models discussed in the previous
sections. The MC data points have been taken from [15, 16]. (The cut-off in the HRS-model data
for larger a is due to the convergence radius for the coupling determinedby the parameteru in
(3.1).) We make the ansatz∆P(a/r0) =C(a/r0)

4 and approximate
(

−b0 g2

β(g)

)

∼ 1. This gives for the
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Figure 6: ∆P(a/r0) with fit curves∼ (a/r0)
4.

range 0.1≤ a/r0 ≤ 0.25

r4
0 〈

α
π

GG〉HRS= 1.63(9), r4
0 〈

α
π

GG〉boosted= 1.80(5). (4.1)

Fig. 6 shows that the data are well described by the ansatz∼ (a/r0)
4 over a large range ofa.

Inserting , e.g.r0 = 0.5 fm we obtain

〈
α
π

GG〉HRS= 0.039(2)GeV4, 〈
α
π

GG〉boosted= 0.043(2)GeV4 . (4.2)

One can try to fit the more general ansatz∆P = C(a/r0)
δ to the data. For the boosted model and

0.1≤ a/r0 ≤ 0.25 we getδ = 3.5±0.1 which is not too far fromδ = 4.
All given errors are purely statistical, some of the systematic uncertainties are at least as large,

and we are planning a more careful error analysis in the full paper [14]. It should be emphasized
that the determination of the gluon condensate depends lesson the assumption of large loop order
behavior than in earlier investigations where all contributions beyondn = 10 were obtained by
extrapolation.

5. Summary

In this paper we presented the perturbative calculation of Wilson loops of different sizes up
to loop ordern = 20 using NSPT. We compared three models to describe the data:a renormalon
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inspired model (BDMO), a heuristic fit (HRS) and boosted perturbation theory. We found that up
to ordern= 20 the resulting curves show a∼ a4 behaviour. This supports the claim of Narison and
Zakharov [10] that a behaviour∼ a2 is due to perturbative series cut a lower order. The values (4.2)
for 〈α

π GG〉 found for HRS and boosted PT are larger than obtained in othercomputations [1, 7, 13].
The gluon condensate can also be obtained from larger and/orasymmetric Wilson loops serving as
an additional check. We hope to come back to this problem in [14].
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