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1. Introduction

Over the last years interesting results in Landau gauge gluodynamicshawuefound for
gluon and ghost propagators (and, consequently, for the runninging) both within the semi-
analytical Dyson-Schwinger(DS) as well as Functional RenormalizationixFRG) approaches
[1, 2] and with the help of lattice computations [3, 4, 5, 6, 7]. They havétek@ontroversal
debates about the behaviour in the deep infrared (IR) region. Within $hard FRG approach it
was demonstrated [2] that the behaviour strongly depends on the clidieeinfrared limit of the
ghost dressing function taken as a boundary condition for solving tinecéted) system of equa-
tions. The so-calledcaling solutionexhibits an IR singular well-defined power-like behaviour of
the ghost dressing function and correspondingly a vanishing glugragator in agreement with
the quite attractive confinement scenarios invented some time ago by Grith@wamziger on one
hand and by Kugo and Ojima on the other. Moreover, it was in accordaitic®RST invariance
properties.

Lattice results — as long as they are based on the assumption that one hasge Ghibov
gauge copies as close as possible toftimelamental modular regior support with convincing
numerical evidence the so-callddcoupling solutionwith finite IR limits of both the gluon prop-
agator and the ghost dressing function. Revisiting the cas&J{) lattice gauge theory we give
here further evidence for this observation by a consequent useddficient gauge fixing method,
the simulated annealinggorithm. Since previous lattice investigations of the IR limit both in
SU(2) as well as inSU(3) were carried out at quite strong bare coupling values in order to reach
largest possible physical volumes the continuum limit was not really underaio Therefore, in
the given contribution to LATTICE '09 we have a look into the scaling prapsrof the gluon
propagator, which seem to be a bit more involved in$h#2) than in theSU(3) case. We neglect
so-calledSU(2)-flips which enlarge the class of Landau gauge orbits and allow to extren@ze th
gauge functional even further.

2. Landau gauge fixing, Gribov ambiguity and gluon propagator

In order to fix the gauge on the lattice we apply gauge transformatigrsc G = SU(N;),
(N = 2,3) to sets {Ux,} of link variables by mappingUyx, — Uy, = g(X)Ux u0" (X + f1).
The set of all admissible{9U, ;,} for a given field {Uy,} is called a gauge orbit. The Landau
gaugedyAy =0 for Ay, = (1/2iado) (Uxy — U{H)tracdessis fixed by searching for the local
maxima gimx(X) of the gauge functional

Rl = 3 Re TroUy (2.1)

CX,IJ

In general for non-Abelian groupgS more than one local maximungimx(X) can be found, the
so-called Gribov copies. Since the values of the gauge functibpé@] and other gauge-variant
quantitiesO(%U ) computed for various Gribov copies typically are correlated, furtheificiation
of the gauge fixing condition is required. In case of Landau (or Coul@abyes foSU(N;) gauge
theories it was proposed [8] to choose tilebal maximum ggmx(X) among all local ones, thus
introducing thefundamental modular regio(FMR) inside theGribov region the latter defined
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by the positivity region of the Faddeev-Popov operator [8]. In thegmestudy we still keep the
FMR condition. In practice it is hard - if not even impossible - to reach the Fitierefore, one
is interested to improve the gauge fixing method and/or to apply the method of chaigetimes

starting from random gauges in order to find the “best copies” clos¢isetBMR.

In what follows we reconsider the question of how the gluon propaga&tents on the Gri-
bov ambiguity when the (Landau) gauge is fixed on a lattice. This questiobdssaddressed
for relatively small lattice volumes already in preceding publications (e.g. ,in(§911]). Note
that in previous papers, instead of a comparison between two diffeaegeefixing techniques, a
comparison is made of the “best copy” (bc) with respect to the maxin@| value achieved and
“first copy” (fc), i.e. corresponding to a randomly chosen copy [i%], In [11] “worst” copies
were used for comparison, as well. There a visible Gribov copy effastraported for the gluon
propagator in the infrared. However, the effect appeared to be muoh pnonounced, when (i)
the gauge orbit was extended by admitting nonperiodic (periodic ZgNg)) gauge transforma-
tions (lips) and when (ii) the standard overrelaxation method (OR) was replacedsimyudated
annealingalgorithm (SA) - always followed by finalizing OR steps [13, 14, 15]. Bwrer, the
more efficient gauge fixing approach (SA + flips) led to a suppressifinitd-volume effects, and
indications were found that the influence of flip transformations on the gltmpagator gradually
weakens with increasing linear lattice size But all these results were obtained at rather small
lattice volumes.

In the present study fd8U(2) we neglect the flip gauge transformations and compare the SA
method with the OR algorithm for strictly periodic gauge transformations. Our mgiation of
SA gauge fixing in theSU(2) case differs from that foBU(3) gluodynamics [6, 7] only in some
technical details. We note that the “temperatufigay, from which SA cooling starts in th8U(2)
case, is chosen to be the “critical” vallig of some phase transformation [16, 7], which takes
place in the gauge-fixing field(x) interacting with the Monte Carlo generated equilibrium field
Uy i, according to the gauge functional (2.1). For 8lé(2) case it looks like a higher order phase
transition [16] or even like a “crossover”. Anyhow, we have choggi = Ter = 1.1 in most cases.
Simulated annealing, also known as “stochastic optimization method” [17], icipkenallows
getting arbitrarily close to the global maximuig [ggmy, if the number of SA “cooling steps” is
large enough. This is the underlying idea of our “single copy” methodessfally used in our
SU(3) papers [6, 7]. In fact, in ouBU(2) computations we have used long SA chains v@ti0%)
steps fromlyax down toTmin = 0.01 [6].

The comparison for the unrenormalized gluon propagator obtained withe®Ay OR tech-
niques on 86 lattices atB = 2.30 is shown in Fig. 1, where we have plotted only results for mo-
mentag? surviving the so-called cylinder cut [18, 5]. One can clearly see aewttie difference
between SA and OR gluon propagator values in the deep infrared rggio®.2GeV?, where the
Gribov effect leads to a qualitative change of the behaviour of the glumpagator. The question
remains, whether the Gribov copy effect for the gluon propagator ereawith a further increase
of the lattice volume.

3. Check of scaling and multiplicative renormalizability

The progress to reach the infrared regime had the price to consider ladtice dields on
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Figure 1: Comparison of the unrenormalized gluon propagator obtimigh SA and OR gauge fixing
methods. The OR data are taken from Ref. [5].
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Figure 2: The unrenormalized gluon propagal(g?) for various (, 3) pairs, i.e. at fixed physical volume.

rather coarse lattices. To our knowledge the continuum limit expressedroparpscaling and a
multiplicative renormalization behaviour was not yet considered in detail rge kolumes. We
have made a step into this direction again neglecting the influeneeoflip transformations.

We have computed the gluon propagator on a sequence of lattices withsingréaear lattice
sizeL andf3, choosing [, B) such that the physical volume was kept more or less constant. We
have produced equilibrium ensembles of MC configurations and fixedahddu gauge with the
(single-copy) SA method for(L, ) = (40,2.2),(56,2.3),(80,2.4),(112 2.5), i.e. for a physical
box size of approximately 10 fm. The bare gluon propagBiay) for these pairs of parameters is
shown in Fig. 2.

There are quite strong differences which have not been observesl3{B) case before. But



Gluon propagator in SU2 LGT revisited I. L. Bogolubsky

L=112, beta=2.5, 161 conf.
o L=80, beta=2.4, 74 conf.
A L=56, beta=2.3, 90 conf|
v L=40, beta=2.2, 99 conf.

0.5 ,

1
o[GeV]
Figure 3: The renormalized gluon dressing function in the MOM scheme.

this does not come unexpected. In the continuum or scaling limit the baragatnw is expected
to be multiplicative renormalizable as in perturbation theory. This means that&etine results
obtained at different lattice cutoffs a finite multiplicative renormalization up to Ethdifacts
should be possible. In a finite volume — unavoidable for any lattice results mtiftglicative
renormalization could be violated by finite-size effects.

In accordance with the standard momentum-subtraction (MOM) renormalizati@me we
have multiplicatively rescaled the bare gluon dressing funciin, 8) = ¢°D(q?) (for all 8 val-
ues considered) equating the renormalized values at gemeto the tree-level valugen(?) = 1.
The renormalization point was chosenyst = 5.8 Ge\?, sufficiently far away from the cutoff
momentuma?,,, = 79.4 Ge\? for B = 2.50. For illustration the finite renormalization factors
Z(u?,B)/Z(u?,B = 2.5) are shown in the Table 1. They were obtained by interpolating between
the 7 data points closest to the chosen sgdler 8 = 2.5.

Table 1: Finite renormalization factors fqr? = 5.8Ge\~.

B [ Z(W2B)/Z(1%B =25)
2.2 0.815
2.3 0.8925
2.4 0.9489

The MOM-renormalized dressing function is plotted in Fig. 3. One clearly S&d the three
curves for the renormalized dressing functifg,(g?) obtained at lattice sizels= 56,80,112 lie
nicely on top of each other, thus confirming the expected multiplicative retiaahdity. For 3 =
2.2 andL = 40 there are some scaling violations that can be understood as lattice artfacie
slight variations of the curve obtained with the largest lattiece 112 probably can be attributed to
problems with the still unsufficient Monte Carlo statistics and/or autocorrekation

4. Conclusions

The comparison of OR- and SA-based results for the gluon propagatorf 80 and = 2.3
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clearly shows a noticeable Gribov copy effect in the range of momghta 0.2GeV?. At the
moment the (dis)appearance of this effect for even larger volumes igearsting open problem.
An open question is also, whether our results obtained on large volumesewillodified, when
Z(2) flips are taken into account. This is a matter of research in a forthcomingsaipene of the
coauthors [19].

Using SA-based Landau gauge fixing we have got numerical confirmfriosm nonpertur-
bative multiplicative renormalizability for the gluon dressing function. Finitegffects already
seem to be negligible in the given range of momenta.
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