
P
o
S
(
L
A
T
2
0
0
9
)
2
3
8

Gauge invariance of the color confinement
mechanism due to the Abelian dual Meissner effect

Katsuya Ishiguro ∗,a,d Masayasu Hasegawa, b,d Yoshiaki Koma, c,d Toru Sekido, b and
Tsuneo Suzuki b,d

aIntegrated Information Center, Kochi University, Kochi 780-8520, Japan
bInstitute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan
cNumazu College of Technology, Numazu 410-8501, Japan
dRIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama351-0198, JAPAN
E-mail: ishiguro@kochi-u.ac.jp , masayasu@hep.s.kanazawa-u.ac.jp ,
koma@numazu-ct.ac.jp , suzuki@hep.s.kanazawa-u.ac.jp

The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in

terms of the Abelian fields and monopoles extracted from non-Abelian link variableswithout

adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the

Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be

identical to the non-Abelian string tension. These potentials also show the scaling behavior with

respect to the change of lattice spacing. Second, the profile of the color-electric field between a

quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-

electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian

color direction. The parameters corresponding to the penetration and coherence lengths show the

scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates

that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These

results are summarized in which the Abelian fundamental charge defined in an arbitrary color

direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state

in any Abelian color direction corresponds to the physical color-singlet state, this effect explains

non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of

color confinement due to the dual Meissner effect caused by Abelian monopoles.

The XXVII International Symposium on Lattice Field Theory
July 26-31, 2009
Peking University, Beijing, China

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ishiguro@kochi-u.ac.jp
mailto:masayasu@hep.s.kanazawa-u.ac.jp
mailto:koma@numazu-ct.ac.jp
mailto:suzuki@hep.s.kanazawa-u.ac.jp


P
o
S
(
L
A
T
2
0
0
9
)
2
3
8

Gauge invariance of the color confinement mechanism due to the Abelian dual Meissner effect
Katsuya Ishiguro

1. Introduction

Color confinement in quantum chromodynamics (QCD) is still an important unsolved prob-
lem. ’t Hooft [1] and Mandelstam [2] conjectured that the QCD vacuum is a kind of dual supercon-
ducting state caused by condensation of magnetic monopoles. The color charges are then confined
inside hadrons due to the formation of the color-electric flux tube through the dual Meissner effect.

An interesting idea to realize this conjecture is proposed by ’t Hooft [3], such that SU(3) QCD
can be reduced to an Abelian [U(1)]2 theory by adopting a partial gauge fixing, and the color-
magnetic monopoles appear according toπ2(SU(3)/[U(1)]2) = Z2. The role of monopoles for
the confinement mechanism is investigated extensively on the lattice by applying Abelian projec-
tion in the maximally Abelian (MA) gauge [4, 5], where monopoles are extracteda la DeGrand-
Toussaint [6] as in compact U(1) lattice gauge theory. It is then found that the results strongly
support the dual superconducting scenario [7, 8, 9, 10, 11, 12, 13]. The confining properties are
dominated by the Abelian fields [7, 9] and monopoles [9, 14, 15, 16] , which are called Abelian
dominance and monopole dominance, respectively. The color-electric flux is squeezed by the dual
Meissner effect [8, 11, 12, 13]. Moreover monopole condensation is confirmed by the energy-
entropy balance of the monopole trajectories [16, 17, 18]. These results indicate that there must
exist a dual Ginzburg-Landau (GL) type theory as an infrared effective theory of QCD [19, 20].

However, there are still serious problems to prove this scenario. First, there are infinite ways
of the partial gauge fixing. Since the behavior of the monopoles can depend on the gauge choice,
it is not clear if the lattice results in the MA gauge are universal. Second, as the ’t Hooft scheme
essentially uses the Abelian degrees of freedom, it is not explained how non-Abelian color charges
are confined.

Recently, we obtained clear numerical evidences of Abelian dominance and the dual Meissner
effect in local unitary gauges [21] and without adopting gauge fixing [22, 23] in SU(2) lattice
gauge theory, where we have used the DeGrand-Toussaint monopoles [6] as in the MA gauge.
These results provide us with the following idea ; there must exist a gauge-invariant mechanism
of color confinement due to Abelian monopoles [24, 25]. In this paper, we aim to show detailed
numerical evidence of how these ideas are realized.

The paper is organized as follows. In Sec.2 , we compute the static quark-antiquark potential
and the force with the Abelian and monopole Polyakov loop correlators. In Sec.3, we investigate
the correlation function between the Abelian operators and the Wilson loop. In Sec.4, we discuss
implications of our results, i.e., the Abelian fundamental charge defined in an arbitrary color di-
rection is confined by the dual Meissner effect. The final section5 is devoted to conclusion and
remarks. Details can be found in the publication [22, 23].

2. Abelian dominance and monopole dominance

We explain how to extract the Abelian fields and the color-magnetic monopoles from the ther-
malized non-Abelian SU(2) link variablesUµ(s) =U0

µ(s)+ iσ⃗ ·U⃗µ(s) where⃗σ = (σ1,σ2,σ3) is the
Pauli matrix. Abelian link variables in one of the color directions, for example, in theσ1 direction
are defined asuµ(s) = cosθµ(s)+ iσ1sinθµ(s) whereθµ(s) = arctan

(
U1

µ(s)/U0
µ(s)

)
correspond

to the Abelian fields. Without gauge fixing the Abelian fields in any color directions should be
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equivalent. We then define the Abelian field strength tensors as

Θµν(s) = θµ(s)+θν(s+ µ̂)−θµ(s+ ν̂)−θν(s) = Θ̄µν(s)+2πnµν(s) , (2.1)

whereΘ̄µν ∈ [−π,π] andnµν(s) is an integer corresponding to the number of the Dirac strings
piercing the plaquette. The monopole currents are then defined by [6]

kν(s) =
1

4π
εµνρσ ∂µΘ̄ρσ (s+ ν̂) = −1

2
εµνρσ ∂µnρσ (s+ ν̂) ∈ Z , (2.2)

where∂µ is regarded as a forward difference.
The Abelian static potentialVA is evaluated from the correlation function of the Abelian

Polyakov loop operator

PA = exp[i
Nt−1

∑
k=0

θ4(s+k4̂)] , (2.3)

separated at a distanceR asVA(R) = − ln⟨PA(0)P∗
A(R)⟩/(aNt), wherea denotes the lattice spacing

andNt the temporal lattice size. We then fit the potential to the usual functional form

Vfit(R) = σR−c/R+ µ , (2.4)

whereσ denotes the string tension,c the Coulombic coefficient, andµ the constant. By using
the multilevel noise reduction method [26], we showed Abelian dominance such that the Abelian
string tension is the same as the non-Abelian one at zero temperature in Ref. [22].

The monopole part of the Polyakov loop operator is extracted as follows. Using the lattice
Coulomb propagatorD(s− s′), which satisfies∂ν∂ ′

νD(s− s′) = −δss′ with a forward (backward)
difference∂ν (∂ ′

ν ), the temporal components of the Abelian fieldsθ4(s) are written as

θ4(s) = −∑
s′

D(s−s′)[∂ ′
νΘν4(s′)+∂4(∂ ′

νθν(s′))] . (2.5)

Inserting Eq. (2.5) [and then Eq. (2.1)] to the Abelian Polyakov loop (2.3), we obtain

PA = Pph ·Pmon ,

Pph = exp{−i
Nt−1

∑
k=0

∑
s′

D(s+k4̂−s′)∂ ′
νΘ̄ν4(s′)} ,

Pmon = exp{−2π i
Nt−1

∑
k=0

∑
s′

D(s+k4̂−s′)∂ ′
νnν4(s′)} . (2.6)

We callPph the photon andPmon the monopole parts of the Abelian Polyakov loop, respectively. The
latter is due to the fact that the Dirac stringsnν4(s) lead to the monopole currents in Eq. (2.2) [6].
Note that the second term of Eq. (2.5) does not contribute to the Abelian Polyakov loop in Eq. (2.3).

We then compute the static potential from the monopole Polyakov loop correlation function.
However, since Eq. (2.6) contains the nonlocal Coulomb propagatorD(s− s′) and the Polyakov
loop is not written as a product of local operators along the time direction, the multilevel method
cannot be applied. Without such a powerful noise reduction method, it is hard to measure the
Polyakov loop correlation function at zero temperature with the present available computer re-
source. Thus we consider a finite temperatureT ̸= 0 system in the confinement phase. We set
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β N3
s ×Nt a(β ) (fm) Nconf NRGT

2.20 243×4 0.211(7) 6000 1000
2.35 243×6 0.137(9) 4000 2000
2.35 363×6 0.137(9) 5000 1000
2.43 243×8 0.1029(4) 7000 4000

Table 1: Simulation parameters for the measurement of the static potential and the force fromPA , Pph and
Pmon. NRGT is the number of random gauge transformations.
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Figure 1: Thea(β ) dependence of the square root
of the non-Abelian, Abelian and monopole string
tensions for the same temperatureT = 0.8Tc.
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Figure 2: The volume dependence of the square root
of the string tensions on the 243×6 and 363×6 lat-
tices atβ = 2.35.

T = 0.8 Tc. In order to examine the scaling behavior of the potential, we simulate the Wilson ac-
tion on the 243× (Nt = 4,6,8) lattices. We also investigate the spatial volume dependence of the
potential for theNt = 6 case. Simulation parameters are summarized in Table1.

Since the signal-to-noise ratio of the correlation functions ofPA , Pph, andPmon are still very
small with no gauge fixing, we adopt a new noise reduction method [22]. For a thermalized gauge
configurationUµ(s), we produce many gauge copiesUg

µ(s) applying random gauge transforma-
tions. Then we compute the operator for each copy and take the average over all copies. The
results obtained with this method are gauge averaged, thus, gauge invariant.

We obtain very good signals for the potentials. We fit these potentials to the functionVfit(R)
in Eq. (2.4) and extract the string tension and the Coulombic coefficient. Abelian dominance is
seen again as in Ref. [22]. Moreover, we observe monopole dominance, i.e., the string tension of
the static potential from the monopole Polyakov loop correlation function is identical to that of the
non-Abelian static potential, while the potential from the photon Polyakov loop correlation function
contains no linear part. It is remarkable that Abelian dominance and monopole dominance for the
string tension are almost perfect as explicitly shown in Fig.1, which also shows the good scaling
behavior with respect to the change of lattice spacing. We do not see the volume dependence of
the string tension as shown in Fig.2. These results suggest that although the lattice monopoles
defined in Eq. (2.2) are gauge-dependent, they contain physical gauge-invariant pieces responsible
for confinement, which show up after taking the gauge average.
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Figure 3: The penetration depthλ as a function
of lattice spacinga(β ).
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Figure 4: Tests of the dual Ampère law atβ = 1.28
for W(R= 5,T = 5).

3. The Abelian dual Meissner effect

We investigate the correlation function [27, 28] between a Wilson loopW and a local Abelian
operatorO connected by a product of non-Abelian link variables (Schwinger line)L,

⟨O(r)⟩W =
⟨Tr

[
LW(R,T)L†σ1O(r)

]
⟩

⟨Tr [W(R,T)]⟩
. (3.1)

We shall use the cylindrical coordinate(r,φ ,z) to parametrize theq-q̄ system, where thez axis
corresponds to theq-q̄ axis andr to the transverse distance. We are interested in the field profile as
a function ofr on the midplane of theq-q̄ system.

In this computation, we employ the improved Iwasaki gauge action [29] with the coupling
constantsβ = 1.10 and 1.28 on the 324 lattice, andβ = 1.40 on the 404 lattice in order to investigate
the scaling behavior of the correlation functions with less finite-lattice cutoff effects. We use the
Wilson loopW(3,5) at β = 1.10, W(5,5) at β = 1.28, andW(7,7) at β = 1.40. Note that the
physicalq-q̄ distance is the same [R= 0.32 (fm)] for these Wilson loops.

We measure all cylindrical components of the color-electric fieldsO(s) = EAi(s) = Θ̄4i(s).
We find that onlyEAz has correlation with the Wilson loop. We then fit⟨EAz(r)⟩W to a function
f (r) = c1exp(−r/λ )+c0 and find that the profile of⟨EAz(r)⟩W is well described by this functional
form, i.e., the color-electric field is exponentially squeezed. The parameterλ corresponds to the
penetration depth are plotted in Fig.3 as a function of lattice spacinga(β ). We find that the
penetration depthλ shows the good scaling behavior.

To see what squeezes the color-electric field, we study the Abelian (dual) Ampère law derived
from the definition of the monopole current in Eq. (2.2),

∇⃗× E⃗A = ∂4B⃗A +2π⃗k , (3.2)

whereBAi(s) = (1/2)εi jkΘ̄ jk(s). The correlation of each term with the Wilson loop is evaluated on
the same midplane of theq-q̄ system as for the profile measurements of the color-electric field. We
find that only the azimuthal components are nonvanishing, which are plotted in Fig.4. Note that if
the color-electric field is purely of the Coulomb type, the curl of the electric field is zero. On the
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Figure 5: The coherence lengthξ as a function of
the lattice spacinga(β ).
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Figure 6: The GL parameters as a function of the
lattice spacinga(β ).

contrary, the curl of the electric field is nonvanishing and is reproduced mostly by the monopole
currents. In any case, the dual Ampère law is satisfied, which is a clear signal of the Abelian dual
Meissner effect. This result is quite the same as that observed in the MA gauge [12, 13].

Let us estimate the coherence length by evaluating the correlation function between the squared
monopole densityO(s) = k2

µ(s) and the Wilson loop [30]. We then fit the profile of⟨k2
µ(r)⟩W to the

functional formg(r) = c′1exp(−
√

2r/ξ )+c′0, where the parameterξ corresponds to the coherence
length. The coherence length shows the scaling behavior as demonstrated in Fig.5 as a function of
lattice spacinga(β ).

Taking the ratio of the penetration depth and the coherence length, the GL parameter
√

2κ =
λ/ξ can be estimated, which characterizes the type of the superconducting vacuum. The results
are plotted in Fig.6 against lattice spacinga(β ). We find that the GL parameter shows the scaling
behavior and the value is about 1. This means that the vacuum type is near the border between the
types 1 and 2 dual superconductors. However, we note that the physical spatial size of the Wilson
loop used in the present simulations is still small [R = 0.32 (fm)]. Clearly, further quantitative
studies with larger Wilson loops are needed to determine the definite value.

4. Non-Abelian color confinement

Let us consider what is induced from the above numerical results. Since gauge fixing is not
applied in these computations, Abelian fields in any color directions are equivalent. Thus, our result
is interpreted as that the color-electric fields in all color directions are squeezed and the Abelian
(monopole) string tensions in all color directions are the same as the non-Abelian string tension.
This indicates that QCD contains a gauge-invariant Abelian mechanism of confinement which is
not related to the specific gauge fixing. Namely Abelian monopoles in three color directions are
condensed in the vacuum of the confinement phase ofSU(2) QCD.

Let us denote quark fields having charge 1/2 and−1/2 in theσ3 direction, respectively, as
u3 andd3. Then local mesonic states,u3ū3 andd3d̄3, are Abelian color neutral in theσ3 direction.
Consider next

u1 =
u3 +d3√

2
, d1 =

u3−d3√
2

, u2 =
iu3 +d3√

2
, d2 =

iu3−d3√
2

.
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u1 andd1 (u2 andd2) are quark fields having charge 1/2 and−1/2 in theσ1 (σ2) direction. Using
these expressions, the quark-gluon coupling term is written as

ψ̄γµ σa

2
ψAa

µ =
1
2
(ū3γµd3 + d̄3γµu3)A1

µ − i
1
2
(ū3γµd3− d̄3γµu3)A2

µ

+
1
2
(ū3γµu3− d̄3γµd3)A3

µ (4.1)

=
1
2
(ū1γµu1− d̄1γµd1)A1

µ +
1
2
(ū2γµu2− d̄2γµd2)A2

µ

+
1
2
(ū3γµu3− d̄3γµd3)A3

µ , (4.2)

where the first equation (4.1) is expressed in terms ofu3 andd3 alone. Consider local mesonic states
u1ū1 andd1d̄1 (u2ū2 andd2d̄2) which are Abelian color neutral in theσ1 (σ2) direction. When we
look at the statesu1ū1 andd1d̄1 in theσ3 direction, they are written as the sum of color-neutral and
color-charged states:

u1ū1 =
1
2
(u3ū3 +d3d̄3 +u3d̄3 +d3ū3) , d1d̄1 =

1
2
(u3ū3 +d3d̄3−u3d̄3−d3ū3) . (4.3)

The same observation applies to the color-neutral statesu2ū2 andd2d̄2 in theσ2 direction. However,
we find that

u1ū1 +d1d̄1 = u2ū2 +d2d̄2 = u3ū3 +d3d̄3 , (4.4)

are Abelian color neutral in all color directions. The state (4.4) is nothing but the non-Abelian color
singlet state.

This example tells us that the Abelian color-neutral state in any color directions corresponds to
the physical non-Abelian color-singlet state. Hence, the confinement of non-Abelian color charges
can be explained in terms of the Abelian dual Meissner effect due to Abelian monopoles.

5. Concluding remarks

We make some concluding remarks. The Abelian gauge fields extracted from the thermalized
non-Abelian link fields contain originally topological monopoles responsible for the confinement
mechanism of non-Abelian color charges even in the continuum limit. Our results presented in this
paper are almost the same as those obtained in the maximally Abelian gauge. This suggests that the
MA gauge fixing is the easiest method to extract the physical ingredients of the monopoles, since
we do not need very precise time-consuming simulations in the MA gauge as done here.
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