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1. Introductory Remarks and Calculation Setup

We will present the main features of the method and preliminary results of the bag parameter
calculation for the K meson oscillations at three values of the lattice spacing using theNf = 2
dynamical quark configurations produced by the ETM collaboration.

ETMC dynamical configurations have been produced with the tree-level Symmanzik improved
action in the gauge sector while the dynamical quarks have been regularized by employing the
twisted mass (tm) formalism [1]. It has been demonstrated that with the condition ofmaximal twist
this formalism provides automaticO(a)-improved physical quantities [2].

In the so called physical basis the fermion lattice action concerning the sea sector is written

Ssea= a4∑
x

ψ̄(x)(γ∇̃− iγ5 τ3 Wcr + µsea)ψ(x) , (1.1)

with Wcr =−a
2 ∑µ ∇∗

µ∇µ +Mcr(r = 1); ψ = (u d)T is a doublet of degenerate light sea quarks while
µsea= diag(µu µd). We should also note that the tm formalism offers a simpler renormalisation
pattern with comparison to the standard Wilson regularization. This is true for some important
physical quantities calculated on the lattice, as for example the pseudoscalar decay constant and
the chiral condensate.

It has been shown that the use of the tm regularization can simplify the renormalization pattern
properties of the four-fermion operators which enter in thecalculation of certain phenomenolog-
ically important weak matrix elements such asBK [1, 3, 4]. In order to achieve bothO(a) im-
provement and a continuum-like renormalization pattern inthe evaluation ofBK we introduce the
valence quarks with Osterwalder-Seiler lattice action andallow for replica of the down (d, d′) and
strange (s, s′) flavours [5], viz.

Sval = a4∑
x

∑
f=d,d′ ,s,s′

q̄f (x)
(

γ∇̃− iγ5 r f Wcr + µ f

)

qf (x) , −rs = rd = rd′ = rs′ = 1. (1.2)

The valence sector action above is written (unlike eq. (1.1)) in the so called physical quark basis
with the fieldqf representing just one individual flavour. While the four fermion operator relevant
for BK (see eq. (2.1)) is chosen to contain all the four valence flavours in eq. (1.2), the interpolating
fields for the external (anti)Kaon states are made up of a tm-quark pair (d̄γ5s, with −rs = rd) and a
OS-quark pair (̄d′γ5s′, with rd′ = rs′). This mixed action setup with maximally twisted Wilson-like
quarks has been studied in detail in Ref. [5], allows for an easy matching of sea and valence quark
masses and leads to unitarity violations that vanish asa2 as the continuum limit is approached. In
the present case, however, the quark mass matching is incomplete because we are neglecting the
sea strange quark (i.e. partially quanched computation), thereby inducing some (possibly small)
O(a0) systematic error. We notice that the proposed method for obtaining automaticO(a) improved
results has already been tested successfully in the calculation of BK with fully quenched quarks [6].

In Table 1 we give the simulation details concerning the massvalues of the sea and the valence
quarks for each value of the gauge coupling for the calculation presented in this work. The smallest
sea quark mass corresponds to a pion of about 270 MeV for the case ofβ = 3.90. Forβ = 4.05
the lightest pion weights 300 MeV while forβ = 3.80 the lowest pion mass is around 400 MeV.
The highest sea quark mass for the three values of the latticespacing is about half the strange quark
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mass. For the inversions in the valence sector we have made use of the stochastic method (one–
end trick of ref. [7]) in order to increase the statistical information. Propagator sources have been
located at randomly chosen timeslices. For more details on the dynamical configurations and the
stochastic method application see Refs [8, 9].

β a−4(L3×T) aµℓ = aµsea aµh

3.80 243×48 0.0080 0.0110 0.0200, 0.0250
(a∼ 0.1 fm) 0.0300, 0.0360

3.90 243×48 0.0040, 0.0064 0.0150, 0.0220
0.0085, 0.0100 0.0270, 0.0320

3.90 323×64 0.0030, 0.0040 0.0220, 0.0270
(a∼ 0.085 fm)

4.05 323×64 0.0030, 0.0060 0.0150, 0.0180
(a∼ 0.065 fm) 0.0080 0.0220, 0.0260

Table 1: Simulation details

2. The K-meson bag parameter

We recall that in our mixed action setup all the physical quantities are evaluated with no O(a)
discretization effects (see Ref. [5]) and moreover the fourfermion operator relevant forBK , which
reads

[

VµVµ +AµAµ

]phys-basis

bare
= [(q̄sγµqd)(q̄s′γµqd′)+ (q̄sγµγ5qd)(q̄s′γµγ5qd′)]+ [d ↔ d′] . (2.1)

is multiplicatively renormalizable. This can be easily understood by noting that in the (unphysical)
tm basis, where the Wilson term enters the valence action in the standard way (with noiγ5-twist)
and the operator renormalization properties are the same ofthe standard Wilson fermionic action,
the operator (2.1) takes the form

[

VµAµ +AµVµ

]tm-basis

bare
= [(χ̄sγµ χd)(χ̄s′γµγ5χd′)+ (χ̄sγµγ5χd)(χ̄s′γµ χd′)]+ [d ↔ d′] , (2.2)

Hereχ f = exp−iγ5π/4 qf andχ̄ f = q̄f exp−iγ5π/4, f = d,d′,s,s′ are the tm basis valence quark fields.
The operator (2.2) is known to be protected from mixing underrenormalisation due toCPSsym-
metry [10]. In summary we have (“R” stands for “renormalized”)

[

VµVµ +AµAµ

]phys-basis

R
= ZVA+AV

[

VµVµ +AµAµ

]phys-basis

bare
= ZVA+AV

[

VµAµ +AµVµ

]tm-basis

bare
,

(2.3)
where the name of the renormalization constant is chosen so as to be consistent with the notation
used in the standard Wilson fermion literature.

In order to estimate theBK-parameter we calculate a three-point correlation function where a
four-fermion operator is free to move in lattice timet whereas two “K-meson walls" consisting of
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noisy sources are imposed at fixed time separationtR− tL = T/2. ThetL value changes randomly
from configuration to configuration. In our simulations we consider the time reversed case too and
we average them properly. The plateau signal is taken fortL ≪ t ≪ tR. We extractBK from the
ratio:

RBK =
C(3)

K̄OK(t − tL, t − tR)

C(2)

K̄ (t − tL)C
(2)
K (t − tR)

tL≪t≪tR−→ BK (2.4)

In our analysis all correlation functions satisfy the condition aµl = aµseawhile the valence strange-
like quark mass values are given in Table 1. An important remark is in order: the mixed regu-
larization set-up that we have used leads at finite lattice spacing to different values for the decay
constant and the pseudoscalar masses of the two K-mesons employed in the calculation. We find
that the discretisation effects are negligible for the decay constant while happen to be significant in
the case of the pseudoscalar mass. For this reason we normalize the four fermion matrix element by
dividing with (8/3)mOS

K mtm
K f OS

K f tm
K . Moreover, as expected, the cutoff effects diminish drastically

towards the CL. So this kind of systematic error is well undercontrol.

The fits to the light quark mass behaviour are performed usingtheSU(2) Partially Quenched
Chiral Perturbation Theory formula of refs [11, 12]. In our case the fit ansatz is:

B(µh) = Bχ(µh)
[

1 + b(µh)
2B0

f 2 µl −
2B0

32π2 f 2 µl ln
(2B0µl

Λ2
χ

)

]

+D(µh)a
2 (2.5)

where µh denotes the quark mass values around the strange quark (see Table 1). Thus, the fit
procedure consists of a combined fit of chiral and continuum extrapolation. We find that the cutoff
effects on our data are well described by aµl -independent (butµh-dependent)O(a2) term.

Two methods of analysis have been followed. The first method relies on using the information
for the physical mass values of the up/down and strange quarks in the continuum limit, as they have
been estimated in a recent ETMC computation [13]. Note that the implementation of this method
requires the knowlegde of the quark mass renormalization constant [14]. The second method con-
sists of employing the pseudoscalar masses instead of the quark masses. In this case we choose
a set of three values of reference pseudoscalar masses made out of two strange-like quarks,Mhh;
keeping each of them fixed we perform the chiral fits in terms ofthe light pseudoscalar mass. In
the end of the procedure we estimateBK via an interpolation at the physical point defined by the
formulaM2

ss= 2M2
K −M2

π. Both methods give compatible final results within less thanone standard
deviation.

In Figure 1(a) the quality of the plateau is shown forβ = 3.90, for three values of the light
quark mass and for one typical value ofµh; in Figure 1(b) we present an example of a combined
chiral plus continuum fit (three value of the lattice spacing) for BRGI

K (l ,h) versus the light pseu-
doscalar mass squared in units ofr0; the value ofMhh is in the vicinity of the physical one.

The two point renormalisation constants for the axial and vector current have been calculated
using the RI-MOM method [15]. We recall that the physical axial current made up of OS quarks is
normalized byZA while the one consisting of tm quarks is normalized byZV [14]. The RI-MOM
method has also been employed for the calculation of the renormalisation constant of the four-
fermion operator [16]. In Figure 2(a) we show the behaviour of the renormalisation constant as a
function of the momentum squared in lattice units(ap)2 for β = 3.90 at the valence chiral limit
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Figure 1: (a) The quality of the plateau for three values of the light quark mass forβ = 3.90; (b) Com-
bined chiral and continuum fit forBRGI

K (l ,h) versus(r0Mll )
2. The empty black circle gives the value at the

continuum limit for the case of(r0Mhh) = 1.50;

and foraµsea= 0.0040. Discretization effects ofO(a2) have been evaluated at one loop [17] and
subtracted from the relevant correlation functions. Thus,the leading discretization effects on our
RI-MOM determination of the renormalization constant are of O(g4a2,g2a4). We show three types
of results; two of them correspond to two estimates of the subtracted perturbative contributions.
The amount of the subtraction depends on the choice of the value for the gauge coupling. We have
considered two cases for the gauge coupling, the naive (g0) and the boosted one (gb). We also
show the result for theZVA+AV(RGI) without considering any perturbative subtractions (indicated
as “uncorrected” in the figure). In the right panel of the samefigure we illustrate the absence of
mixing with “wrong chirality" operators; in fact the mixingcoefficients are vanishing.
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Figure 2: (a) RI/MOM computation of the multiplicative renormalization factorZVA+AV(RGI) at β = 3.90;
(b) Mixing coefficients∆k (k = 1, · · · ,4) with other four-fermion operators with “wrong chirality".

Our preliminary result forBK in the RGI scheme in the continuum limit is

BRGI
K = 0.73(3)(3)
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The first error includes the uncertainty coming from the correlators and from the fit procedure
(chiral plus continuum) while the second one is due to the uncertainties in the calculation of the
renormalisation constants. We are currently attempting toreduce the latter uncertainty.

3. The K-bag meson parameter beyond the SM

Interactions beyond the SM including supersymmetry furnish new diagrams in the calculation
of the ∆S= 2 process. Their effect expressed in the OPE expansion is to enrich the set of the
local operators to be considered in the low energy regime, see e.g. [18]. Therefore one has to
calculate on the lattice the matrix elements of five parity even four-fermion operators namelyO1 =

OVV+AA,O2 = OSS+PP,O3 = OT̃T,O4 = OSS−PP andO5 = OVV−AA [19, 20, 21].
It is well known that the renormalisation pattern of the parity-even four-fermion operators

becomes complicated because of mixings as soon as the regularization breaks the chiral symmetry;
this is certainly the case of Wilson fermions. However usingthe proposal of Ref. [5] this problem
is bypassed; due to the axial rotation mapping of the parity-even to parity-odd operators in the tm
basis the renormalisation pattern becomes continuum-like[16]. It is worth mentioning that, as in
the case of the SM four-fermion operator, the lattice estimates of the matrix elements ofO2, . . . ,O5

are automaticallyO(a)-improved.
First results regarding the signal quality for the case ofβ = 3.90 are given in Figure 3. We

depict the plateaux for theB3 bag parameter (left panel) and for the quantityR3 ∼
〈K̄|O3|K〉
〈K̄|O1|K〉

(right
panel). Both figures refer to the same value of the light quarkmass for three different choices of
the strange-like quark mass. Computation at the other two values of the lattice spacing as well as a
full determination of the renormalisation constant matrixis still in progress.
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Figure 3: (a) and (b): the quality of the signal for the quantitiesB3 andR3 respectively at three values of the
strange-like quark mass usingaµl = 0.0040 atβ = 3.90.
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