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1. Introduction

The discovery of the Higgs boson and the measurement of its interactions with massive quarks
and vector bosons represent a central goal of the Large Hadron Collider (LHC). In the mass range
114GeV < MH <∼ 130GeV, associated tt̄H production provides the opportunity to observe the Higgs
boson in the H → bb̄ decay channel and to measure the top-quark Yukawa coupling. However, the
extraction of the tt̄H(H → bb̄) signal from its large QCD backgrounds, pp → tt̄bb̄ and tt̄jj, repre-
sents a serious challenge. The selection strategies elaborated by ATLAS and CMS [1, 2], which
assume 30fb−1 and 60fb−1, respectively, anticipate a statistical significance around 2σ (ignoring
systematic uncertainties) and a signal-to-background ratio as low as 1/10. This calls for better than
10% precision in the background description, a very demanding requirement both from the exper-
imental and theoretical point of view. Very recently, a novel selection strategy based on highly
boosted Higgs bosons has opened new and very promising perspectives [3]. This approach might
increase the signal-to-background ratio beyond 1/3.

The calculation of the NLO QCD corrections to the irreducible tt̄bb̄ background, first pre-
sented in [4, 5] and subsequently confirmed in [6], constitutes another important step towards the
observability of tt̄H(H → bb̄) at the LHC. These NLO predictions are mandatory in order to reduce
the huge scale uncertainty of the lowest-order (LO) tt̄bb̄ cross section, which can vary up to a factor
four if the QCD scales are identified with different kinematic parameters [7]. Previous results for
five-particle processes that feature a signature similar to tt̄bb̄ indicate that setting the renormaliza-
tion and factorization scales equal to half the threshold energy, µR,F = Ethr/2, is a reasonable scale
choice. At this scale the NLO QCD corrections to pp → tt̄H (K ' 1.2) [8], pp → tt̄j (K '1.1) [9],
and pp → tt̄Z (K ' 1.35) [10], are fairly moderate. This motivated experimental groups to adopt the
scale µR,F = Ethr/2 = mt +mbb̄/2 for the LO simulation of the tt̄bb̄ background [1]. However, at this
scale the NLO corrections to pp → tt̄bb̄ turn out to be unexpectedly large (K ' 1.8) [5, 6]. As we
argue, a reliable perturbative description of tt̄bb̄ production requires a different scale choice [11].

The calculation of the NLO corrections to pp → tt̄bb̄ constitutes also an important techni-
cal benchmark. The description of many-particle processes at NLO plays an central role for the
LHC physics programme, and the technical challenges raised by these calculations have triggered
an impressive amount of conceptual and technical developments. Within the last few months,
this progress has lead to the first NLO results for six-particle processes at the LHC, namely for
pp → tt̄bb̄ [5, 6], the leading- [12] and the full-colour contributions [13] to pp → Wjjj, and for the
qq̄ contribution to pp → bb̄bb̄ [14].

To compute the virtual corrections to tt̄bb̄ production we employ explicit diagrammatic rep-
resentations of the one-loop amplitudes and numerical reduction of tensor integrals [15, 16]. The
factorization of colour matrices, the algebraic reduction of helicity structures, and the systematic
recycling of a multitude of common subexpressions—both inside individual diagrams and in tensor
integrals of different diagrams that share common sub-topologies—strongly mitigate the factorial
complexity that is inherent in Feynman diagrams and lead to a remarkably high CPU efficiency.
The real corrections are handled with the dipole subtraction method [17]. Our results have been
confirmed with the HELAC-1LOOP implementation of the OPP method [18, 19, 20] within the
statistical Monte Carlo error of 0.2% [6].
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2. Description of the calculation

In NLO QCD, hadronic tt̄bb̄ production involves the 2 → 4 partonic channels qq̄ → tt̄bb̄
(7 trees and 188 loop diagrams) and gg → tt̄bb̄ (36 trees and 1003 loop diagrams). The 2 → 5
bremsstrahlung contributions comprise the crossing-symmetric channels qq̄ → t t̄bb̄g, qg → tt̄bb̄q,
and gq̄ → tt̄bb̄q̄ (64 diagrams each), and the partonic process gg → tt̄bb̄g (341 diagrams). Each
contribution has been worked out twice and independently, resulting in two completely indepen-
dent computer codes. The treatment of the qq̄- and gluon-induced reactions are described in [4]
and [11], respectively. Here we mainly focus on the virtual corrections in the gg channel.

Feynman diagrams are generated with two independent version of FEYNARTS [21, 22] and
handled with two in-house MATHEMATICA programs that perform algebraic manipulations and
generate FORTRAN77 code fully automatically. One of the two programs relies on FORMCALC [23]
for preliminary algebraic manipulations. The interference of the one-loop and LO matrix elements,
summed over colours and helicities, is computed on a diagram-by-diagram basis,

∑
col

∑
hel

M
(1-loop)

(

M
(LO)

)∗
= ∑

Γ

[

∑
col

∑
hel

M
(Γ)
(

M
(LO)

)∗
]

. (2.1)

Individual loop diagrams (Γ) are evaluated by separate numerical routines and summed explicitly.
The cost related to the large number of diagrams is compensated by the possibility to perform
colour sums very efficiently thanks to colour factorization [see (2.2)]. Individual (sub)diagrams
consist of a single colour-stripped amplitude A (Γ) multiplied by a simple colour structure,1 which
is easily reduced to a compact colour basis {C k}. The LO amplitude is handled as a vector in
colour space, and colour sums are encoded once and for all in a colour-interference matrix Ikl ,

M
(Γ) = A

(Γ)

(

∑
k

c(Γ)
k Ck

)

, M
(LO) = ∑

l

M
(LO)
l Cl, Ikl = ∑

col
CkC

∗
l . (2.2)

These ingredients yield colour-summed results by means of a single evaluation of the colour-
stripped amplitude A (Γ) of each (sub)diagram. Tensor integrals with N propagators and P Lorentz
indices are expressed in terms of totally symmetric covariant structures {g . . .gp . . . p}µ1...µP

j1... jP involv-
ing external momenta p1, . . . , pN−1 and gµν in D = 4−2ε dimensions [16],

(2πµ)4−D

iπ2

∫

dDq
qµ1 . . .qµP

∏N−1
i=0

[

(q+ pi)2 −m2
i + i0

] =
N−1

∑
j1,..., jP=0

T N
j1... jP {g . . .gp . . . p}µ1...µP

j1... jP . (2.3)

The gg channel involves tensor integrals up to rank P = 4. The coefficients T N
j1,..., jP are related to

scalar integrals by means of numerical algorithms that avoid instabilities from inverse Gram deter-
minants and other spurious singularities [15, 16]. The tensor rank and the number of propagators of
integrals with N > 4 are simultaneously reduced without introducing inverse Gram determinants.
Tensor integrals with N = 4,3 are handled with the Passarino–Veltman algorithm as long as no

1More precisely, each quartic gluon coupling generates three independent colour structures that are handled as
separate subdiagrams. However, most diagrams do not involve quartic couplings, and their colour structure factorizes
completely.

3



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
0
4

NLO QCD corrections to tt̄bb̄ production at the LHC Stefano Pozzorini

small Gram determinant appears in the reduction. Otherwise, expansions about the limit of vanish-
ing Gram determinants and possibly other kinematical determinants are applied [16]. The reduction
is strongly boosted by a cache system that recycles tensor integrals among diagrams with common
subtopologies. The gg channel involves about 350 scalar integrals, which require 10ms CPU time
per phase-space point.2 The calculation of all scalar and tensor integrals with and without cache
system takes 40ms and 200ms, respectively. Rational terms arising from ultraviolet (UV) poles of
tensor integrals with D-dependent coefficients are automatically extracted by means of a catalogue
of residues RN

j1... jP ,

f (D)T N
j1... jP = f (D)

(

T̂ N
j1... jP +

RN
j1... jP

εUV

)

= f (4)T N
j1... jP −2 f ′(4)RN

j1... jP . (2.4)

Rational terms resulting from infrared poles must be taken into account only in wave-function
renormalization factors, since they cancel in truncated one-loop amplitudes [4].

The helicity-dependent parts of all diagrams are reduced to a common basis of so-called Stan-
dard Matrix Elements (SMEs) of the form

M̂m = Qµ1µ2ρ1...ρl
m εµ1(p1)εµ2(p2)

[

v̄(p3)γρ1 . . .γρk u(p4)
][

v̄(p5)γρk+1 . . .γρl u(p6)
]

, (2.5)

where Qµ1µ2ρ1...ρl
m are combinations of metric tensors and external momenta. The colour-stripped

part of each loop diagram [see (2.2)] yields a linear combination of SMEs and tensor integrals,

A
(Γ) = ∑

m
F

(Γ)
m M̂m, F

(Γ)
m = ∑

P

N−1

∑
j1,..., jP=0

K
(Γ)

m; j1... jP T N
j1... jP + rational parts. (2.6)

The use of SMEs enables very efficient helicity summations. Helicity and colour sums are encoded
in the interference of SMEs M̂m and colour structures Ck with the LO amplitude,

Mkm = ∑
col

∑
hel

M̂mCk

(

M
(LO)

)∗
= ∑

l

Ikl ∑
hel

M̂m

(

M
(LO)
l

)∗
. (2.7)

This matrix, which must be computed only once per phase-space point, links the colour/helicity-
independent form factors F

(Γ)
m of each diagram to its colour/helicity-summed contribution

∑
col

∑
hel

M
(Γ)
(

M
(LO)

)∗
= ∑

m
F

(Γ)
m

(

∑
k

c(Γ)
k Mkm

)

. (2.8)

The SME-reduction starts with process-independent D-dimensional relations such as momentum
conservation, Dirac algebra, transversality, and gauge-fixing conditions for the gluon-polarization
vectors. Once rational terms are extracted, we further reduce SMEs with two alternative algo-
rithms in four dimensions. The first algorithm splits each fermion chain into two contributions,
u(pi) = ∑λ=± ωλ u(pi), via insertion of chiral projectors ω± = (1± γ5)/2. This permits to em-
ploy various relations of type γ µγα γβ ω±⊗γµ = γ µ ω±⊗

(

γµ γβ γαω± + γαγβ γµ ω∓
)

, which connect
Dirac matrices of different fermion chains [4, 24]. In this way a rich variety of non-trivial identities

2All CPU times refer to a 3 GHz Intel Xeon processor.
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are obtained that reduce the full amplitude to 502 SMEs [11]. Besides this procedure, which de-
pends on process-specific aspects, we implemented a simple process-independent reduction based
on a four-dimensional identity of type γ µ1γ µ2γ µ3γ µ4γ µ5 = gµ1µ2γ µ3γ µ4γ µ5 −gµ1µ2 gµ3µ4γ µ5 +perm.,
which eliminates spinor chains with more than three Dirac matrices without introducing γ5 [11].
This leads to 970 SMEs. In spite of the factor-two difference in the number of SMEs, we found that
the numerical codes based on the two different reductions have the same—and remarkably high—
CPU speed: about 180 ms per phase-space point. This unexpected result means that the obtained
CPU performance, at least for this process, does not depend on process-dependent optimisations.

To handle the real corrections we employed the dipole subtraction method [17, 25]. The 2 → 5
matrix elements were generated with MADGRAPH [26] and checked against analytic calculations
and in-house code based on off-shell recursions. More details are given in [11].

3. Predictions for the LHC

We present results for pp→ tt̄bb̄+X at
√

s = 14TeV for mt = 172.6GeV and mb = 0. Collinear
final-state partons are recombined into jets with

√

∆φ 2 +∆y2 > 0.4 using a kT-algorithm. We
impose the cuts pT,b > 20GeV and |yb|< 2.5 on b jets and use the CTEQ6 set of PDFs with NF = 5
active flavours and ΛMS

5 = 226MeV. Further details are given in [11].
In all recent ATLAS studies of tt̄H(H → bb̄) [1] the signal and its tt̄bb̄ background are sim-

ulated by setting the renormalization and factorization scales equal to half the threshold energy,
Ethr = 2mt + mbb̄. Being proportional to α 4

s , these LO predictions are extremely sensitive to the
scale choice, and in [5] we found that at µR,F = Ethr/2 the NLO corrections to pp → tt̄bb̄ are close
to a factor of two. This enhancement is due to the fact that pp → tt̄bb̄ is a multi-scale process
involving various scales well below Ethr/2. In particular, the cross section is saturated by b quarks
with pT,b � mt [11]. In order to avoid large logarithms we advocate the use of the dynamical scale

µ2
0 = mt

√

pT,b pT,b̄, (3.1)

which improves the perturbative convergence and minimises NLO effects in the shape of distribu-
tions [11]. In Fig. 1 we show results for the kinematic region mbb̄ > 100GeV, which is relevant
for ATLAS/CMS studies of tt̄H(H → bb̄). The left plot displays the dependence of the LO and
NLO cross sections with respect to scale variations µR = µF = ξ µ0. At the central scale we obtain
σLO = 786.3(2) fb and σNLO = 978(3) fb. This NLO result is 2.18 times larger as compared to
the LO cross section based on the ATLAS scale choice [11]. The scale choice (3.1) reduces the K
factor to 1.24, and the NLO (LO) uncertainty corresponding to factor-two scale variations amounts
to 21% (78%). The improvement with respect to [5] is evident also from the stability of the NLO
curve in Fig. 1a. The right plot in Fig. 1 displays LO (blue) and NLO (red) scale-dependent pre-
dictions for the mbb̄ distribution. The results are normalized to the LO distribution at µR,F = µ0 and
the bands correspond to factor-two scale variations. The NLO predictions perfectly fit within the
LO band and exhibit little kinematic dependence. Inspecting various other distributions we found
similarly small NLO corrections to their shapes. In Fig. 2 we show similar plots for the kinematic
region pT,bb̄ > 200GeV, which permits to increase the separation between the Higgs signal and
its tt̄bb̄ background [3]. At the central scale we obtain σLO = 451.8(2) fb and σNLO = 592(4) fb.
The K factor (1.31), and the LO (79%) and NLO (22%) scale dependence behave similarly as for
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Figure 1: pp → tt̄bb̄+X cross section at the LHC for standard cuts and mbb̄ > 100GeV: scale dependence
of the LO and NLO cross section (left plot) and relative NLO corrections to the mbb̄ distribution (right plot).

NLO
LO

σ [fb]

p
T,bb̄

> 200GeV

µ2
F

= mt

√
pT,bpT,b̄

ξ2

µ2
R

= mt

√
pT,bpT,b̄

ξ2

pp → tt̄bb̄ + X

ξ

84210.50.250.125

3500

3000

2500

2000

1500

1000

500

0
400350300250200150100500

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

dσNLO

dσLO

p
T,bb̄

> 200GeV

pp→ tt̄bb̄ + X

m
bb̄

[GeV]

Figure 2: pp → tt̄bb̄+X cross section at the LHC for standard cuts and pT,bb̄ > 200GeV: scale dependence
of the LO and NLO cross section (left plot) and relative NLO corrections to the mbb̄ distribution (right plot).

mbb̄ > 100GeV. But in this case the NLO corrections are rather sensitive to mbb̄. In the physi-
cally interesting region of mbb̄ ∼ 100GeV, the shape of the mbb̄ distribution is distorted by about
20%. This effect tends to mimic a Higgs signal and should be carefully taken into account in the
tt̄H(H → bb̄) analysis.

4. Conclusions

The observation of the tt̄H(H → bb̄) signal and the direct measurement of the top-quark
Yukawa coupling at the LHC require a very precise description of the pp → tt̄bb̄ irreducible back-
ground. The NLO QCD corrections to tt̄bb̄ production reveal that the scale choice adopted in
previous LO studies underestimates this cross section by a factor of two. We advocate the use of a
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dynamical scale that stabilizes the perturbative predictions reducing the K factor to about 1.2. In
presence of standard cuts NLO effects feature small kinematic dependence. But in the regime of
highly boosted Higgs bosons we observe significant distortions in the shape of distributions.

The calculation is based on process-independent algebraic techniques, which reduce loop di-
agrams to standard colour/helicity structures, and numerically stable tensor-reduction algorithms.
The very high numerical stability and CPU efficiency of this approach are very encouraging in view
of future NLO calculations for multi-particle processes.
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