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In this talk we discuss recent progress concerning precise predictions for hadron colliders. We

show results of two applications of tensor reduction using GOLEM methods: the next-to-leading

order (NLO) corrections topp→ ZZ+jet as an important background for Higgs particle and

new physics searches at hadron colliders, and the NLO corrections to graviton plus jet hadro-

production, which is an important channel for graviton searches at the Tevatron and the LHC.
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1. NLO corrections to pp→ ZZ+ jet

Weak boson pair production at hadron colliders plays an essential part in the search for Higgs
particles and for physics beyond the Standard Model (SM), since weak bosons can decay into
jets, charged leptons or neutrinos and hence produce the same signatures as Higgs bosons, new
coloured particles, new electroweak gauge bosons or dark matter candidates. In addition to being
an important background to direct new physics searches at the Large Hadron Collider (LHC) [1],
weak boson pair production also allows to search for new physics via experimental evidence for
SM deviations in the form of anomalous interactions betweenelectroweak gauge bosons [2]. Since
LO predictions for hadron collider processes are affected by large QCD scale uncertainties with
respect to normalisation and kinematical dependence, the inclusion of NLO QCD corrections is
important when comparing predictions for cross sections and differential distributions with data.
A process of interest is the production of weak boson pairs with one additional jet at NLO. It is
interesting in its own right, due to the enhanced jet activity, particularly at the LHC and in addition
provides the real-virtual contribution to the next-to-next-to-leading order (NNLO) corrections to
weak boson pair production. The production ofW-boson pairs with an additional jet has thus been
calculated at NLO without [3] and with [4, 5] decays. Here, wefocus on the processpp→ ZZ j
which has recently also been computed at NLO [6].

At LO, all channels forZZ j production at hadron colliders are related to the amplitude0→
ZZqq̄gby crossing symmetry. Therefore, the following subprocesses contribute:

qq̄→ ZZg, qg→ ZZq, q̄g→ ZZq̄,

whereq can be either an up- or down-type quark. We calculate in the 5-flavour scheme, i.e.q =

u,c,d,s,b, and neglect all quark masses.

At O(αs), the most complicated loop topologies are pentagon graphs derived from the tree-
level graphs via virtual gluon exchange (and crossing), andbox graphs derived by closing the quark
line in the tree-level graphs and attaching agqq̄ current. Representative one-loop graphs for the
partonic processqq̄ → ZZgare shown in Fig. 1. Two independent sets of amplitude expressions
have been generated, both of them using the spinor helicity formalism of Ref. [7]. Polarisation
vectors have been represented via spinor traces, i.e. kinematic invariants up to global phases. By
obtaining an analytical representation for the full amplitude, we aim at promoting simplification
via analytical cancellations. Especially we employ that, apart from the rank one case, all pentagon
tensor integrals are reducible, i.e. can directly be written as simple combinations of box tensor
integrals. For the remaining tensor integrals we employ theGOLEM-approach [8].

TheO(αs) real correction channels forZZ j production at hadron colliders are related to the
amplitudes 0→ ZZqq̄gg and 0→ ZZqq̄q′q̄′ by crossing symmetry. While all virtual correction
channels are already present at LO, new real correction channels open up at NLO, namely thegg,
qq′, qq̄′ (q′ 6= q) and q̄q̄′ channels. Note that these new channels are effectively of LOtype. To
facilitate the cancellation of soft and collinear singularities we employ the Catani-Seymour dipole

Theoretische Teilchenphysik”, the Helmholtz Alliance “Physics at the Terascale”, and the European Community’s
Marie-Curie Research Training Network under contract MRTN-CT-2006-035505 “Tools and Precision Calculations for
Physics Discoveries at Colliders”
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Figure 1: Representative one-loop graphs for the partonic processqq̄→ ZZg.
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Figure 2: Scale dependence (µR= µF = µ) of theZZ+jet cross section and theZZ invariant mass distribution
at the LHC withpT, jet > 50 GeV for the hardest jet in LO (dotted) and NLO (solid). The exclusive NLO
cross section when apT,jet > 50 GeV veto for additional jets is applied is also shown (dot-dashed).

subtraction method [9]. We use the SHERPA implementation [10] to calculate numerical results
for the finite real correction contribution.

In Fig. 2, LO and NLO predictions forZZ j production cross sections at the LHC are displayed.
The shape of the cross section scale variation at the LHC is qualitatively unchanged when going
from LO to NLO, in contrast to the Tevatron, where the cross section reaches its maximum at
approximatelyMZ/2 and where its variation is very effectively reduced. We attribute this to new
channels that become active at NLO. These channels have a modest impact at the Tevatron, but
a sizable impact at the LHC, due to parton densities being probed in differentx regions. We also
calculate an exclusive NLO cross section for the LHC by vetoing 2-jet events with a second hardest
jet with pT > 50 GeV (NLO with 2nd jet veto). This exclusive NLO LHC cross section decreases
for scales belowMZ and has a strongly reduced scale uncertainty. In general, the K factor for
ZZ j production will have a non-negligible dependence on the kinematics. As an example, we
display in Fig. 2 the differential LO and NLO distributions with respect to the invariantZZ mass
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and the resultingK factor at the LHC. TheK-factor bands shown in this figure correspond to a
variation of the scaleµ by a factor of 2 in the NLO differential cross section only, i.e. we display
[dσNLO/dMZZ](µ)/[dσLO/dMZZ](MZ) with µ/MZ ∈ [1

2,2].

2. NLO corrections to pp→ G+ jet

The search for new physics at the TeV-scale is one of the majortasks for current and future
high-energy physics experiments. Models with extra space dimensions and TeV-scale gravity ad-
dress the problem of the large hierarchy between the electroweak and Planck scales, and predict
exciting signatures of new physics that can be probed at colliders [11].

In the D = 4+ δ dimensional model proposed by Arkani-Hamed, Dimopoulos and Dvali
(ADD) [12], the SM particles are constrained to a 3+ 1 dimensional brane, while gravity can
propagate in a 4+δ dimensional space-time. For simplicity, the additionalδ -dimensional space is
assumed to be a torus with common compactification radiusR. In such a model, the 4-dimensional
effective Planck scaleMP is related to the fundamental scaleMS by [12]:

M2
P = 8πRδ Mδ+2

S . (2.1)

For a large compactification radiusR it is thus possible that the fundamental scale is near the weak
scale,MS∼ TeV.

The D = 4+ δ dimensional graviton corresponds to a tower of massive Kaluza-Klein (KK)
modes in 4 dimensions. Although each individual graviton couples to SM matter with only gravita-
tional strength∝ 1/MP, inclusive collider processes, where one sums over all accessible KK modes,
are enhanced by their enormous number∝ M2

P leaving an overall suppression of onlyM−2−δ
S . If

the fundamental scaleMS is near the TeV-scale, graviton production can thus be probed at present
and future high-energy colliders.

Both virtual graviton exchange between SM particles and real graviton emission provide viable
signatures of large extra dimensions at colliders. Since the coupling of gravitons with matter is
suppressed∝ 1/MP, direct graviton production gives rise to missing energy signals. Searches
for graviton production have been performed in the processes e+e− → γ(Z)+ Emiss at LEP and
pp̄→ γ(jet)+ pmiss

T at the Tevatron [13]. Searches for the processpp→ jet+ pmiss
T at the LHC will

be able to extend the sensitivity to the fundamental scaleMS into the multi-TeV region [14, 15].
The NLO QCD corrections to graviton production in the process pp/pp̄→ jet+G have been

computed recently [16]. The NLO cross sections lead to significantly more accurate theoretical
signal predictions and thereby more accurate constraints on MS or, in the case of discovery, will
allow to probe the model parameters.

The LO cross section for graviton plus jet production receives contributions from the partonic
processes

qq̄→ gG, qg→ qG and gg→ gG. (2.2)

We have performed two independent calculations of the virtual corrections: the first calculation is
based on the Mathematica package FeynCalc [20]. Because of the Lorentz indices of the spin-2
graviton, we encounter high-rank tensor integrals, such asrank-5 4-point functions. Special care is
taken to reduce those to one-loop scalar integrals by an independent Mathematica code, following
the prescription of Ref. [21].
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Figure 3: Left: scale variation for the integrated cross section at LHC and Tevatron, for a common scale
µ = µr = µ f andPmiss

T > 500 GeV. Right:Pmiss
T distribution for the graviton signal at the LHC with scale

uncertainty bands (0.5PG
T < µ < 2PG

T ). Also given is the NLO distribution for the dominantZ → νν̄ back-
ground. The lower part of the plot showsK(PT) = (dσNLO/dPT)/(dσLO/dPT) for δ = 2,4,6 (top down).

The second calculation is based on the GOLEM-approach [8] asdescribed in section 1. Only
tensor reduction routines for rankN+1 N-point tensor integrals withN ≤ 3 had to be added.

We have checked gauge invariance and Ward identities arising from general coordinate invari-
ance, see Ref. [17] for more details. The numerical implementation of the real-emission contribu-
tions is based on MadGraph [18] and MadDipole [19].

In Fig. 3, LO and NLO predictions for Graviton plus jet production cross sections at the LHC
are displayed. We observe that the scale dependence of the NLO cross section is significantly
smaller than that of the LO cross section: changingµ in the range betweenPG

T /2 and 2PG
T , the

LO cross section varies by≈ 30%, while the scale uncertainty at NLO is less than≈ 10%. At the
LHC, theK-factor,K = σNLO/σLO, is sizeable at the central scaleµ = PG

T , increasing the LO cross
section prediction by about 20%.

The experimental analyses at the LHC rely on thePmiss
T distribution. The right plot in Fig. 3

shows the scale dependence of this distribution, for different choices of the number of extra dimen-
sionsδ = 2,4,6. We also show the NLO QCD predictions for the main background pp→ Z(→
νν̄)+ jet obtained with MCFM [22]. The bands show the uncertainty of the LO and NLO predic-
tions when varying the renormalization and factorization scales in the rangePG

T /2< µ < 2PG
T . The

reduction of the scale uncertainty at NLO is evident. The figure also displays thePT dependence of
the K factors, defined asK(PT) = (dσNLO/dPT)/(dσLO/dPT). The NLO corrections are sizeable
at the LHC and increasing with decreasingδ . Furthermore, theK factors depend on the kinematics
and increase with increasingPmiss

T .

3. Dedication

We dedicate this proceedings contribution to our colleagueand dear friend Thomas Binoth.
We honour him as a great and passionate physicist, and will remember him as a warmhearted,
honest and wonderful friend who will be greatly missed.
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