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We review recent results concerning the all-order structure of infrared and collinear divergences
in massless gauge theory amplitudes. While the exponentiation of these divergences for non-
abelian gauge theories has been understood for a long time, in the past couple of years we have
begun to unravel the all-order structure of the anomalous dimensions that build up the perturba-
tive exponent. In the large-Nc limit, all infrared and collinear divergences are determined by just
three functions; one of them, the cusp anomalous dimension, plays a key role also for non-planar
contributions. Indeed, all infrared and collinear divergences of massless gauge theory amplitudes
with any number of hard partons may be captured by a surprisingly simple expression constructed
as a sum over color dipoles. Potential corrections to this expression, correlating four or more hard
partons at three loops or beyond, are tightly constrained and are currently under study.
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1. Introduction

The long-distance behavior of gauge theory amplitudes and cross sections has been the subject
of theoretical studies for nearly three quarters of a century. After such a long time, one might
imagine that further progress, if any, should be slow and incremental: on the contrary, the past
few years have witnessed several new developments, some of them surprising. This has been
due in part to the phenomenological requirements set by the beginning of LHC operation, which
places unprecedented pressure on theorists to come up with precise and reliable predictions for very
complex QCD processes. On the other hand, ‘pure theory’ has also played a role: for example,
insights have come from the study of the maximally supersymmetric N = 4 Yang-Mills theory;
also, part of the general motivation for these studies remains the fact that long-distance singularities
provide a gateway from perturbative calculations to the non-perturbative content of the theory.

Much of the knowledge accumulated in earlier work on the structure of singularities for gauge
theory S-matrix elements, which forms the basis for more recent developments, can be summarized
in a single formula1, expressing the factorization of fixed-angle amplitudes into separate functions,
responsible for infrared poles, collinear poles, and finite remainders. Choosing a basis in the space
of available color structures for a given n-particle amplitude, by picking suitable color tensors
ca1,...,an

L , the amplitude Ma1,...,an can be expressed in terms of its components ML. They obey

ML
(

pi/µ,αs(µ
2),ε

)
= SLK

(
βi ·β j,αs(µ

2),ε
)

HK

(
pi · p j

µ2 ,
(pi ·ni)2

n2
i µ2 ,αs(µ

2),ε
)

×
n

∏
i=1

[
Ji

(
(pi ·ni)2

n2
i µ2 ,αs(µ

2),ε
)/

Ji

(
(βi ·ni)2

n2
i

,αs(µ
2),ε

)]
, (1.1)

where pi, i = 1, . . . ,n, are the external hard momenta, which are assumed to form invariants pi · p j

of a common parametric size Q2. In Eq. (1.1), the functions Ji collect all collinear singularities
associated with virtual gluons emitted in direction of parton i. In order to factorize these singu-
larities, it is necessary to introduce ‘factorization vectors’ nµ

i , n2
i 6= 0, which play a threefold role:

first, they ensure gauge invariance of the operator matrix element defining Ji, which includes an
infinite Wilson line in the direction ni; these Wilson lines act as absorbers, replacing the other hard
partons in the amplitude, and collecting the gluons emitted by parton i without generating extra sin-
gularities; finally, ni can be physically interpreted as a vector separating gluons which are collinear
to pi (those whose momenta k satisfy k · pi < k · ni) from (soft) gluons emitted at large angles; in
this sense ni can be properly interpreted as a factorization vector. Note that the jet functions Ji are
color singlets: infrared (soft) singularities, on the other hand, are not color diagonal, and therefore
they are organized in a matrix, SLK , which is purely eikonal. It is defined in terms of a product of
Wilson lines characterized by the directions and color representations of the hard partons. Being
purely eikonal, SLK can only depend on the velocities βi of the hard partons, defined by dividing
out the common hard scale Q, taking pi ∝ Qβi. With these definitions, gluons that are both soft
and collinear to one of the hard partons have been counted twice; it is however simple to subtract
the double counting: one just needs to divide each jet Ji by its own eikonal approximation, denoted
by Ji in Eq. (1.1). The vector of hard functions HK , finally, collects all finite remainders, and

1For reviews of the methods leading to Eq. (1.1) see, for example, [1].

2



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
0
7

All-order results for infrared and collinear singularities Lorenzo Magnea

each component is finite as ε → 0. Note that the matrix element M has been normalized to be
dimensionless: the functional dependences of the various factors in Eq. (1.1) reflect this fact, and
will be further discussed below. In the following, we will briefly outline the consequences of the
factorization presented in Eq. (1.1), beginning with the simpler case of amplitudes at large Nc.

2. Form factors and large-Nc amplitudes

The simplest instance of Eq. (1.1) is given by parton form factors, which describe the scattering
of a parton by an electroweak current2. This is a color-singlet process, so that the soft matrix S is
just a single function. One may then derive an evolution equation by imposing that the form factor
be independent of the factorization vectors ni. The solution to this equation is especially simple
and transparent in dimensional regularization [2]: within this framework, one may take advantage
of the fact that the d-dimensional running coupling vanishes as a power of the scale for d > 4, in
order to impose as a boundary condition that radiative corrections should vanish at Q2 = 0. One
finds that the form factor exponentiates as [3]

Γ
(
Q2,ε

)
= exp

{
1
2

∫ −Q2

0

dξ 2

ξ 2

[
G

(
α

(
ξ

2,ε
)
,ε

)
− 1

2
γK

(
α

(
ξ

2,ε
))

log
(
−Q2

ξ 2

)]}
. (2.1)

The first remarkable fact about Eq. (2.1) is that all singularities are generated by integrating over the
scale of the d-dimensional coupling α: the functions G and γK are finite as ε → 0 and universal.
Specifically, γK(αs) is the cusp anomalous dimension [4], governing ultraviolet singularities for
correlators of pairs of light-like Wilson lines originating at a cusp, and responsible in this case
for double (infrared-collinear) poles; it depends only on the color representation of the hard parton.
The function G generates single poles, as well as finite contributions; it can be expressed in terms of
operator matrix elements involving Wilson lines as well as elementary fields [3], so it also depends
on the the spin of the hard parton. Perhaps more interestingly, it can be decomposed as

G(αs,ε) = 2Bδ (αs)+Geik (αs)+β (αs)∂EH (αs,ε)/∂αs . (2.2)

In Eq. (2.2), Bδ (αs) is the virtual part of the diagonal Altarelli-Parisi splitting function, while
Geik(αs) is a subleading anomalous dimension for Wilson line correlators, associated with the
eikonal approximation to the form factor; the last term generates finite contributions only, and it
vanishes in a conformal theory. We learn that the only non-eikonal contributions to the singular be-
havior of the form factor are contained in the collinear function Bδ (αs). Notably, in the conformal
case, Eq. (2.2) holds also at strong coupling, in the large Nc limit [5].

The second remarkable fact about Eq. (2.1) is that it generates all singularities not only for
form factors, but for all large-Nc multiparton fixed-angle amplitudes as well [6, 7]. In the planar
limit, gluons are confined to propagate inside ‘wedges’ bounded by neighboring hard partons: the
full amplitude becomes then a product of (square roots of) form factors, up to finite corrections.

Finally, the fact that long-distance singularities are completely encoded in the running coupling
has important consequences for conformal theories, such as N = 4 Super-Yang-Mills (SYM). In
dimensional regularization, the coupling for these theories runs simply according to α(µ2,ε) =

2We thank George Sterman, who co-authored Ref. [3], where the results of this section were derived.
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(
µ2/µ2

0
)−ε

α(µ2
0 ,ε), so that all integrations in Eq. (2.1) are trivially performed. This fact was

exploited in [7] to study and test the all-order behavior of amplitudes in N = 4 SYM. By the same
token, one derives [3] a strikingly simple relation tying the analytic continuation of the form factor
to the cusp anomalous dimension. One finds that in any conformal gauge theory∣∣∣∣ Γ(Q2)

Γ(−Q2)

∣∣∣∣2

= exp
[

π2

4
γK

(
αs(Q2)

)]
. (2.3)

Eq. (2.3) ties together two quantities that are finite (and actually independent of Q2) in d = 4, and
are non-perturbatively defined. It may thus be argued to be an exact result for a class of non-trivial
four dimensional gauge theories, which may at some point become testable at strong coupling.

3. Beyond the large-Nc limit

In order to go beyond the large-Nc limit, one must revisit the functional dependences in
Eq. (1.1). Functions defined in terms of Wilson lines with velocities ni (with n2

i 6= 0) depend
homogeneously on the velocity vectors, reflecting the classical invariance of their operator defini-
tions under rescalings nµ

i → κin
µ

i . This is not the case for functions of the light-like Wilson lines
with velocities βi. The reason can be traced to the fact that these functions acquire new collinear di-
vergences, which make the classical invariance under β

µ

i → κiβ
µ

i anomalous at the quantum level.
The anomaly is precisely expressed by the cusp anomalous dimension, which governs the superpo-
sition of soft and collinear singularities. This fact has remarkable consequences on the singularity
structure. Indeed, one may construct a reduced soft matrix, where all soft-collinear double poles
are cancelled, so that the anomaly in rescaling invariance is absent. It is defined by [6, 8]

S LK
(
ρi j,αs(µ

2),ε
)

=
SLK

(
βi ·β j,αs(µ2),ε

)
n

∏
i=1

Ji

(
(βi ·ni)2

n2
i

,αs(µ
2),ε

) . (3.1)

While the functions SLK and Ji separately have double poles, and can thus depend on variables
like βi ·β j, or xi ≡ (βi ·ni)2/n2

i , the reduced matrix S LK has only single poles, and can only depend
on rescaling-invariant combinations of βi and ni, which can only be constructed out of the variables
ρi j ≡ (βi ·β j)2/xix j. Since all functions entering Eq. (3.1) are multiplicatively renormalizable, this
recombination must be reflected in their respective anomalous dimensions, which must obey

Γ
S
IJ

(
ρi j,αs(µ

2)
)

= Γ
S
IJ

(
βi ·β j,αs(µ

2),ε
)
−δIJ

n

∑
k=1

γJk

(
xk,αs(µ

2),ε
)

. (3.2)

We see from Eq. (3.2) that singular terms in the matrix ΓS must be canceled by those in the
eikonal jet anomalous dimensions γJ , and must therefore be diagonal. Furthermore, finite diagonal
contributions must conspire to reconstruct a dependence on ρi j, combining βi ·β j with xi and x j.
Finally, off-diagonal terms in ΓS must be finite, and must by themselves depend only on rescaling-
invariant combinations of βi’s. Such combinations exist only for amplitudes with at least four-
particles, and must be built out of conformal cross-ratios of the form ρi jkl ≡ (βi ·β j)(βk ·βl)/(βi ·
βk)(β j ·βl). These powerful constraints can be summarized in a single set of equations [8], linking
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the matrix ΓS to the cusp anomaly, and correlating kinematic and color degrees of freedom for any
number of partons and at finite Nc. They are given by

∑
j 6=i

∂

∂ ln(ρi j)
Γ

S
MN (ρi j,αs) =

1
4

γ
(i)
K (αs) δMN ∀i , (3.3)

where we made explicit the fact that the cusp anomalous dimension depends on the color repre-
sentation of the selected parton i. An analogous equation was independently derived, using the
methods of soft-collinear effective field theory, in [9].

One may now make the further assumption that the cusp anomalous dimension depend on
the representation only through an overall factor of the quadratic Casimir operator, i.e. γ

(i)
K (αs) =

Ciγ̂K(αs), with γ̂K(αs) a universal function. This assumption (‘Casimir scaling’) is true up to three
loops, and arguments were given in [9] indicating that it should remain valid at four loops. Adopting
the basis-independent notation of color generators, and thus writing Ci = Ti ·Ti, one may construct
an explicit solution of Eq. (3.3). Indeed, the sum-over-dipoles formula

Γ
S
dip (ρi j,αs) = −1

8
γ̂K (αs) ∑

j 6=i
ln(ρi j) Ti ·T j +

1
2

δ̂S (αs)∑
i

Ti ·Ti (3.4)

satisfies Eq. (3.3), as is easily shown using color conservation, ∑i Ti = 0. If desired, the residual
anomalous dimension δ̂S (αs) can be recombined with the color singlet contributions arising from
jet functions in Eq. (1.1): a sum-over-dipoles formula then organizes all infrared and collinear
divergences of fixed-angle amplitudes, for an arbitrary number of partons [9, 10].

4. Beyond the dipole formula?

Eq. (3.4) is remarkable, as it implies that color correlations induced by soft gluons are drasti-
cally simpler than expected on the basis of a diagrammatic analysis. One must ask what corrections,
if any, might arise, that would be compatible with the constraint equation (3.3). Clearly, one pos-
sibility is a breakdown of Casimir scaling, i.e. the presence of higher-rank Casimir operators in
the cusp anomalous dimension at sufficiently high order. The only other possibility allowed by
Eq. (3.3) is the addition of a solution to the associated homogeneous equation. One may write in
full generality

Γ
S (ρi j,αs) = Γ

S
dip (ρi j,αs) + ∆

S (ρi j,αs) , (4.1)

where the correction term ∆S must satisfy

∑
j 6=i

∂

∂ ln(ρi j)
∆

S (ρi j,αs) = 0 ⇔ ∆
S = ∆

S
(
ρi jkl,αs

)
. (4.2)

In words, corrections to the dipole formula must be functions of the conformal cross rations ρi jkl:
thus, by eikonal exponentiation, they must arise from gluon webs connecting at least four hard
partons, and therefore they can first appear at three loops. This analysis explains the results of
Ref. [11]: indeed, the dipole formula correctly reproduces all existing finite-order results.

One may proceed to ask whether further constraints are available, going beyond Eq. (3.3), that
might force the correction term ∆S to vanish, or determine its color structure, and its functional
dependence on ρi jkl’s. This analysis, started in Ref. [9], was pursued in Ref. [12].
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A general constraint on ∆S is dictated by its behavior in the limit where two or more of the
hard partons become collinear. In this limit Eq. (1.1) breaks down, however it is expected that
the new singularities that arise should be captured by a splitting matrix depending only on the
degrees of freedom of the partons becoming collinear. As shown in Refs. [9, 12], this essentially
forces ∆S to have trivial collinear limits. One may furthermore impose Bose symmetry (since ∆S

arises diagrammatically from webs of gluons), and require that, at any given order, the functions
comprising ∆S should satisfy a transcendentality bound (at g loops, one needs τmax = 2g− 1).
Remarkably, the set of functions satisfying all the constraints is quite small, though not empty. As
an example, if one considers functions built out of products of logarithms of ρi jkl’s (which would
naturally occur in Feynman diagram calculations), then Bose symmetry and collinear consistency
single out a unique class of functions. Defining Li jkl ≡ logρi jkl , the quadrupole component of ∆S ,
which is the basic building block for higher-point corrections as well, must be of the form

∆4(ρi jkl) = Ta
1Tb

2Tc
3Td

4

[
fade f e

cb Lh1
1234

(
Lh2

1423 Lh3
1342 − (−1)h1+h2+h3 Lh2

1342 Lh3
1423

)
+ cycl.

]
, (4.3)

where hi are positive integers, and only cyclic permutations of the (2,3,4) labels must be added. In-
cluding the transcendentality bound, at three loops precisely one function in this class survives [12]:
it is given by Eq. (4.3) with h1 = 1 and h2 = h3 = 2. If one considers more general classes of func-
tions, including for example polylogarithms, at least two further consistent examples can be found.

The question whether the dipole formula receives corrections involving multigluon correla-
tions at high perturbative orders remains thus open. It is clear however that such corrections, if any,
are constrained in a much stronger way than might have been expected, and one may concretely
hope to bring them under control in the not too distant future.

References

[1] J. C. Collins, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336]; G. Sterman,
hep-ph/9606312; N. Kidonakis, G. Oderda and G. Sterman, Nucl. Phys. B 531 (1998) 365
[hep-ph/9803241]; L. Magnea, Pramana 72 (2008) 1 [arXiv:0806.3353 [hep-ph]].

[2] L. Magnea and G. Sterman, Phys. Rev. D 42 (1990) 4222.

[3] L. J. Dixon, L. Magnea and G. Sterman, JHEP 0808 (2008) 022 [arXiv:0805.3515 [hep-ph]].

[4] G. P. Korchemsky and A. V. Radyushkin, Phys. Lett. B 171 (1986) 459.

[5] L. F. Alday, JHEP 0907 (2009) 047 [arXiv:0904.3983 [hep-th]].

[6] G. Sterman and M. E. Tejeda-Yeomans, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130].

[7] Z. Bern, L. J. Dixon and V. A. Smirnov, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205].

[8] E. Gardi and L. Magnea, JHEP 0903 (2009) 079 [arXiv:0901.1091 [hep-ph]].

[9] T. Becher and M. Neubert, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722 [hep-ph]]; JHEP
0906 (2009) 081 [arXiv:0903.1126 [hep-ph]].

[10] E. Gardi and L. Magnea, arXiv:0908.3273 [hep-ph].

[11] S. M. Aybat, L. J. Dixon and G. Sterman, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254]; Phys.
Rev. D 74 (2006) 074004 [hep-ph/0607309]; L. J. Dixon, Phys. Rev. D 79, 091501 (2009)
[arXiv:0901.3414 [hep-ph]].

[12] L. J. Dixon, E. Gardi and L. Magnea, arXiv:0910.3653 [hep-ph].

6


