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1. Introduction

Multi-particle interactions with massive particles will play an important role in new physics
searches at the LHC. In order to uncover and distinguish new physics signals accurate predictions
from NLO QCD corrections are essential. In these proceedings we outline recent progress in
analytic computations of virtual corrections to one-loop amplitudes with massive fermions using
newly developed on-shell tools.

New technologies for virtual amplitude calculations have opened up the possibilities of study-
ing complicated multi-particle final states in hadron colliders. Numerical techniques have led the
way giving the first NLO cross sections with four particle final states. QCD amplitudes with mas-
sive particles are computational more intensive due to the larger number of scales encountered.
Nevertheless numerical implementations have been successful for tt̄bb̄ [1 – 3], tt̄ + j [4]. Virtual
corrections to tt̄ + 2 j have also been studied [5, 6] though at the present time the cross-section
remains unknown.

Analytic computations may lead to a considerably faster evaluation of the cross-section al-
lowing for more flexible phenomenological studies. A better understanding of the structure of the
amplitudes would be beneficial to future computations and may help to improve speed and accuracy
in future numerical algorithms.

2. Generalised Unitarity

Generalised unitarity has become an essential tool in the computation of multi-particle one-
loop amplitudes over the last few years. Building from the pioneering work of Bern, Dixon, Dunbar
and Kosower in the mid-nineties [7] the modern picture of unitarity gives a purely algebraic ap-
proach to the computations of one-loop amplitudes making use of complex analysis.

Quadruple cuts with complex momenta completely freeze the four dimensional loop integra-
tion leading directly to the algebraic evaluation of the associated scalar box integral coefficient [8].
The technique of integrand reduction first proposed by Ossola, Papadopoulos and Pittau [9] was
shown to apply elegantly to the extraction of triangle and bubble coefficients using Laurent expan-
sions of the unconstrained integrations by Forde [10]. This method has been generalised to the case
of massive amplitudes [11] and is the basis for the method used here.

In these proceedings we apply the technique of generalised unitarity to compute compact an-
alytic expression for one loop tt̄gg helicity amplitudes. The results are obtained from a semi-
automated system using FORM and Maple. The integral basis and integrands are generated with
Maple before the tree amplitudes (from BCFW recursion relations [12, 13]) are expanded using
FORM to extract closed analytic forms for the integral coefficients. IR consistency equations have
been verified and used to constrain the form of the amplitude and ensure a compact representation.

Massive amplitudes also contain wave-function renormalisation and tadpole terms which are
proportional to logarithms of the mass scales, log(m2). Such terms may also be determined from
the universal UV and IR properties which is the technique we choose to employ here [14]. Firstly
all bubble integrals are replaced with only their finite parts. The coefficients of the log(m2) and
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log(m2
H) terms,

C1/ε

Γ(1+ ε)
ε

(
µ2

R

m2

)ε

+C[H]
1/ε

Γ(1+ ε)
ε

(
µ2

R

m2
H

)ε

, (2.1)

can then be read off by matching the universal IR poles [15] or the small mass expansion [16]. For
the tt̄gg amplitudes considered here in the FDH scheme, after mass renormalisation, the missing
information is simply,

C1/ε = CFA(0)(1t ,2,3,4t̄), C[H]
1/ε

=−4NH

3N
A(0)(1t ,2,3,4t̄). (2.2)

where NH is the number of heavy flavours. For the time being we restrict ourselves to study only
the cut-constructible parts of amplitudes.

3. Spinor/Helicity Formalism

For massless particles it is possible to completely decompose all momenta into a basis of
two-component Weyl spinors since,

pµ =
1
2
〈p|γµ |p]. (3.1)

The polarisation vectors and fermion wave-functions then fit easily into a helicity basis,

u+(p) = |p〉 u−(p) = |p] (3.2)

ε
µ

+(p,ξ ) =
〈ξ |γµ |p]√

2〈ξ p〉
ε

µ

−(p,ξ ) =
〈p|γµ |ξ ]√

2[pξ ]
(3.3)

Kleiss and Stirling described how to construct well defined helicity states for massive momenta
through the introduction of an arbitrary massless vector which defines the reference frame [17].
For a massive vector P we use a massless vector ηP to define a massless projected vector P[:

Pµ = P[,µ +
m2

2P ·η
η

µ

P (3.4)

The ū and v spinors can then be defined by:

ū±(P,m;P[,ηP) =
〈ηP∓|(/P+m)
〈ηP∓|P[±〉

v±(P,m;P[,ηP) =
(/P−m)|ηP±〉
〈P[∓|ηP±〉

. (3.5)

The freedom to keep ηP arbitrary gives us the ability to relate the positive and negative helicity
states by applying a simple transformation (P[ ↔ ηP):

v−(P,m;P[,ηP) =
〈P[ηP〉

m
v+(P,m;ηP,P[). (3.6)

It is therefore sufficient to consider helicity amplitudes where all massive fermion have positive
helicity and obtain the remaining amplitudes by applying eq. (3.6).
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4. Compact expressions for tt̄gg amplitudes

In this section we present a short example for the techniques by applying them to the well
studied case of top pair production through gluon fusion. The final results are obtained in an
extremely compact analytic form and are in agreement with the results in the literature [18 – 20].
The amplitude is decomposed into colour ordered primitive amplitudes as outlined in [21]:

A
(0)

4 (1t ,2,3,4t̄) = ∑
P(2,3)

(T a2T a3)i1i4A(0)
4 (1t ,2,3,4t̄) (4.1)

A
(1)

4 (1t ,2,3,4t̄) = ∑
P(2,3)

N(T a2T a3)i1i4A(1)
4;1(1t ,2,3,4t̄)+δ

a2a3δi1i4A(1)
4;3(1t ,4t̄ ;2,3) (4.2)

A(1)
4;1(1t ,2,3,4t̄) = A[L](1t ,2,3,4t̄)−

1
N2 A[R](1t ,2,3,4t̄)

+
N f

N
A[ f ](1t ,2,3,4t̄)+

NH

N
A[H](1t ,2,3,4t̄) (4.3)

A(1)
4;3(1t ,4t̄ ;2,3) = ∑

P(2,3)

{
A[L](1t ,2,3,4t̄)+A[L](1t ,2,4t̄ ,3)+A[R](1t ,2,3,4t̄)

}
. (4.4)

There are two independent helicity amplitudes, ++++ and ++−+. For simplicity we present
only the leading colour amplitude for the “all-plus" helicity configuration as an example. All
particles are considered to be out-going. The tree amplitude can be written compactly as:

A(0)
4 (1+

t ,2+,3+,4+
t̄ ) =−im3 [23]〈η1η4〉

〈23〉〈2|1|2]〈η11[〉〈η44[〉
(4.5)

The cut-constructible parts of the left-moving primitive amplitude is given by,

− iA[L](1+
t ,2+,3+,4+

t̄ ) =−〈η1η4〉[32]2m3

〈η11[〉〈η44[〉
I4
(
s23,s12,0,0,m2,m2,0,0,m2,0

)
− (2s12〈η1η4〉−〈η1|K12K23|η4〉) [32]m3

〈η11[〉〈η44[〉〈23〉〈2|1|2]2
Î2
(
s12,0,m2)

− Γ(1+ ε)
2ε

(
µ2

R

m2

)ε

iA(0)
4 (1+

t ,2+,3+,4+
t̄ )+R[L]

4 , (4.6)

where Î2
(
s12,0,m2

)
is the finite part of the scalar bubble integral and R[L]

4 are the remaining rational
terms. We have also defined Ki j = pi + p j for convenience. The more complicated right-moving
primitive amplitude is,

− iA[R](1+
t ,2+,3+,4+

t̄ ) = F4
(
s23,s12,0,0,m2,m2,m2,m2,0,m2)(

−
〈2η1〉〈2η4〉

(
2m2 + 〈2|1|2]

)
[32]2m3

2〈η11[〉〈η44[〉〈23〉〈2|1|3]
+
〈3η1〉〈3η4〉

(
2m2 + 〈2|1|2]

)
[32]2m3

2〈η11[〉〈η44[〉〈23〉〈3|1|2]

−
(
2
(
2m2− s23

)
〈η1η4〉+2〈η1|K12K23|η4〉

)
[32]m3

2〈η11[〉〈η44[〉〈23〉

)
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+ I3
(
s23,m2,m2,m2,0,m2) (2m2− s23

)
〈η1η4〉[32]m3

〈η11[〉〈η44[〉〈23〉〈2|1|2]
+ I3

(
s12,0,m2,0,m2,m2)(

(2〈η1η4〉〈23〉+4〈2η4〉〈3η1〉)[32]m3

〈η11[〉〈η44[〉〈23〉2 +
〈3η1〉〈3η4〉〈2|1|3][32]m3

〈η11[〉〈η44[〉〈23〉2〈2|1|2]
− 〈2η1〉〈2η4〉〈3|1|2][32]m3

〈η11[〉〈η44[〉〈23〉2〈2|1|2]

+
〈2η1〉〈2η4〉〈2|1|2][32]m3

〈η11[〉〈η44[〉〈23〉2〈2|1|3]
− 〈3η1〉〈3η4〉〈2|1|2][32]m3

〈η11[〉〈η44[〉〈23〉2〈3|1|2]

)
+ I3

(
0,0,s23,m2,m2,m2)(

〈2η1〉〈2η4〉[32]2m3

2〈η11[〉〈η44[〉〈23〉〈2|1|3]
− 〈3η1〉〈3η4〉[32]2m3

2〈η11[〉〈η44[〉〈23〉〈3|1|2]
− 〈η1η4〉[32]m3

〈η11[〉〈η44[〉〈23〉

)

− Î2
(
s12,0,m2) (2s12〈η1η4〉−〈η1|K12K23|η4〉) [32]m3

〈η11[〉〈η44[〉〈23〉〈2|1|2]2

− Γ(1+ ε)
2ε

(
µ2

R

m2

)ε

iA(0)
4 (1+

t ,2+,3+,4+
t̄ )+R[R]

4 , (4.7)

where we define the finite integral combination:

F4
(
s23,s12,0,0,m2,m2,m2,m2,0,m2)=

I4
(
s23,s12,0,0,m2,m2,m2,m2,0,m2)− 1

〈2|1|2]
I3
(
s23,m2,m2,m2,0,m2) . (4.8)

The contribution coming from heavy fermion loops is given by:

− iA[H](1+
t ,2+,3+,4+

t̄ ) =
2mm2

H(〈η1η4〉〈2|1|2]+ 〈2η1〉〈3η4〉[32])
〈η11[〉〈η44[〉〈23〉3[32]

×(
2Î2
(
s23,m2

H ,m2
H
)
− s23I3

(
0,0,s23,m2

H ,m2
H ,m2

H
))

+
4Γ(1+ ε)

3ε

(
µ2

R

m2
H

)ε

iA(0)
4 (1+

t ,2+,3+,4+
t̄ )+R[H]

4 , (4.9)

from which we can read off the light fermion loop contribution:

− iA[ f ](1+
t ,2+,3+,4+

t̄ ) = R[ f ]
4 (4.10)

5. Outlook

We have shown that the generalised unitarity framework can be applied successfully to ampli-
tudes with massive fermions to obtain compact analytic expressions. A semi-automated system for
the computation of integral coefficients has been developed using FORM and Maple so that exten-
sion to processes with additional external partons is relatively straightforward. A detailed knowl-
edge of the IR structure is essential and the cut-constructible parts of tadpole and wave-function
renormalisation contributions have been fixed using the universal pole structure.

The obvious missing ingredients necessary to complete the amplitudes are the rational terms,
R[X ]

4 . It has already been demonstrated that these terms can be obtained numerically from D-
dimensional generalised unitarity [5, 22]. In order to find the most compact representation it may
also be useful to investigate the possibility of a dedicated Feynman reduction approach.
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