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The B-meson distribution amplitude (DA) is defined as the matrix element of a quark-antiquark

bilocal light-cone operator, associated with a long-distance component in QCD factorization for-

mula for exclusive B decays. We treat the corresponding bilocal operator based on the operator

product expansion (OPE), as the short-distance expansion for the quark-antiquark light-like dis-

tance t. The matching at the next-to-leading order α s with the local operators of dimension d � 5

manifests the OPE that has the Wilson coefficients, receiving the cusp singularity, and the novel

higher-dimensional operators with additional gluons. This OPE is useful for a low renormaliza-

tion scale μ � 1 GeV, allowing us to derive the model-independent form of the B-meson DA

for t � 1�μ in terms of a few nonperturbative parameters. We also discuss the evolution of the

DA, which is governed by the cusp as well as the DGLAP-type anomalous dimension. These

anomalous dimensions give the “quasilocal” kernel in the coordinate-space representation, and

the corresponding evolution equation can be solved analytically, accomplishing the relevant Su-

dakov resummation. This result allows us to calculate the B-meson DA at the factorization scale
�

mbΛQCD using our OPE-based DA as the input at μ � 1 GeV. The impact of our results on the

integral relevant to exclusive B decays, λB, is discussed.
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For the exclusive B-meson decays, such as B � ππ , ργ � � � �, systematic methods have been
developed using QCD factorization based on the heavy-quark limit [1, 2]. In the corresponding fac-
torization formula of the decay amplitude, essential roles are played by the light-cone distribution
amplitudes (LCDAs) for the participating mesons, which include nonperturbative long-distance
contributions. In particular, in addition to the LCDAs for the light mesons π�ρ , etc., produced in
the final state, the LCDA φ̃� for the B meson, defined as the vacuum-to-meson matrix element [3],

φ̃��t�μ� �
1

iF�μ�
�0�q̄�tn�Peig

� t
0 dλn�A�λn� /nγ5hv�0��B̄�v�� �

�
dωe�iωtφ��ω �μ� � (1)

participates in the processes where a large momentum is transferred to the spectator light-quark
via gluon exchange [2]. Here, the bilocal operator is built of the b-quark and light-antiquark fields,
hv�0� and q̄�tn�, linked by the Wilson line at a light-like separation tn, with nμ as the light-like
vector (n2 � 0, n � v � 1), and vμ representing the 4-velocity of the B meson; a difference between
(1) and the familiar pion-LCDA is that hv�0� is an effective field in the heavy-quark effective theory
(HQET). μ denotes the scale where the operator is renormalized, and F�μ� is the decay constant
in HQET, F�μ� ��i�0�q̄ /nγ5hv�B̄�v��. The RHS in (1) defines the momentum representation, with
ωv� denoting the light-cone component of the momentum of the light antiquark.

The “IR structure” of (1), studied using constraints from the equations of motion (EOM) and
heavy-quark symmetry [3], as well as the “UV structure”, which was calculated in the 1-loop
renormalization of the bilocal operator in (1) [4, 5], is notoriously peculiar compared with the pion
LCDA: the IR structure of (1) receives the complicated mixing of the multiparticle Fock states of
higher-twist nature through the nonperturbative quark-gluon interactions. On the other hand, the
UV structure indicates that the radiative corrections yield the contributions that are singular as t �
0, so that the bilocal operator of (1) is not Taylor expandable about t � 0. In such circumstance, it
is the operator product expansion (OPE), q̄�tn�Peig

� t
0 dλn�A�λn� /nγ5hv�0��∑iCi�t�μ��i�μ� as t � 0,

that enables us to treat both the UV and IR behaviors simultaneously: all the singular contributions
are absorbed into the coefficient functions Ci�t�μ�, while the multiparticle Fock states are embodied
by the higher-dimensional quark-gluon operators arising in the local composite operators �i�μ�. A
first systematic treatment of the mixing of the multiparticle operators, disentangling the (singular)
radiative corrections as the coefficients, has recently been accomplished by us [6], yielding

q̄�tn�Peig
� t

0 dλn�A�λn� /nγ5hv�0� �C�3�
1 �t�μ��

�3�
1 �μ��

2

∑
k�1

C�4�
k �t�μ���4�

k �μ��
7

∑
k�1

C�5�
k �t�μ��

�5�
k �μ� �

(2)
where the summation is over a basis of local operators of dimension-d, ��d�k (k � 1�2� � � �), defined

as ��3�
1 � q̄n�γ5hv, 	��4�

k 
 � 	q̄�in �
��
D �n�γ5hv, q̄�iv �

��
D �n�γ5hv
, and 	�

�5�
k 
 � 	q̄�in �

��
D �2n�γ5hv,

q̄�iv �
��
D ��in �

��
D �n�γ5hv, q̄�iv �

��
D �2n�γ5hv, q̄igGαβ vαnβ n�γ5hv, q̄igGαβ γαnβ n̄�γ5hv, q̄igGαβ γαvβ n̄�γ5hv,

q̄gGαβ σ αβ n�γ5hv
, with another light-like vector, n̄2 � 0, as vμ � �nμ � n̄μ��2, and Gαβ being the
gluon field strength tensor. The Wilson coefficients are obtained at the NLO in the MS scheme, as
C�3�

1 �t�μ�� 1��αsCF�4π��2L2�2L�5π2�12�, C�4�
1 �t�μ���it�C�3�

1 �t�μ��αsCFL�4π�, C�4�
2 �t�μ�

� �itαsCF�4π��4L�3�, C�5�
1 �t�μ� ��t2�C�3�

1 �t�μ��αsCFL�3π��2, where CF � �N2
c �1���2Nc�,

αs � αs�μ�, and L� ln �i�t� i0�μeγE � with the Euler constant γE ; for the explicit form of C�5�
2 �t�μ�,

C�5�
3 �t�μ�, � � � �C�5�

7 �t�μ�, we refer the readers to [6]. In the corresponding matching calculation in-

volving the three-body operators ��5�4�5�6�7 of dimension 5, we calculate the 3-point as well as 2-point
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function with the insertion of the bilocal operator in (1), where the diagrams for the former are ob-
tained by attaching the external gluon line to those for the latter in all possible ways. We find that
the 1-loop corrections for the 2-point function induce all of the above ten local operators using the
EOM, and, in particular, the double logarithm L2 in the corresponding coefficient functions origi-
nates from the vertex-type correction around a “cusp” between the two Wilson lines, the light-like
Wilson line of (1) and the time-like one from hv�0� � Pexp�ig

� 0
�∞ dλv �A�λv��hv��∞v�. The 3-

point function induces only ��5�
4�5�6�7 associated with the field-strength tensor, so that C�5�4�5�6�7�t�μ�

involve the color factor CG � Nc as well as CF [6]. Substituting (2) into (1), we obtain [6],

φ̃OPE
� �t�μ� � 1�

αsCF

4π

�
2L2 �2L�

5π2

12

�
� it

4Λ̄
3

�
1�

αsCF

4π

�
2L2 �4L�

9
4
�

5π2

12

��

�t2Λ̄2
�

1�
αsCF

4π

�
2L2 �

16
3

L�
35
9

�
5π2

12

��
�

t2λ 2
E�μ�
3

�
1�

αsCF

4π

�
2L2 �2L�

2
3
�

5π2

12

�

�
αsCG

4π

�
3
4

L�
1
2

��
�

t2λ 2
H�μ�
6

�
1�

αsCF

4π

�
2L2 �

2
3
�

5π2

12

�
�

αsCG

8π
�L�1�

�
� (3)

This OPE form enables us to evaluate the B-meson LCDA for interquark distances t with t � 1�μ
in a rigorous way in terms of three nonperturbative parameters in the HQET, which participate in
the matrix element �� � �� � �0� � � � �B̄�v�� of the local operators in (2) through the use of the EOM
and heavy-quark symmetry (see [3]): ���4�1 � � 4iF�μ�Λ̄�3, ���4�

2 � � iF�μ�Λ̄, with Λ̄ � mB�mb

being the mass difference between the B-meson and b-quark, and all seven matrix elements ���5�k �

of dimension-5 operators can be expressed by F , Λ̄ and two additional HQET parameters λE and
λH , which are associated with the chromoelectric and chromomagnetic fields inside the B meson
as �q̄gEEE �αααγ5hv�� F�μ�λ 2

E�μ� and �q̄gHHH �σσσγ5hv�� iF�μ�λ 2
H�μ�, respectively, in the rest frame.

The UV structure embodied in (2), (3) determines the scale dependence of the B-meson
LCDA (1). Taking the derivative of (3) with respect to μ and combining with the scale depen-
dence of the HQET parameters, i.e., dΛ̄�dμ � 0 and that of λ2

E�H�μ� (see [6]), we find [9]

μ
d

dμ
φ̃��t�μ� ��

�
Γcusp�αs�L� γF�αs�

�
φ̃��t�μ��

� 1

0
dzK�z�αs�φ̃��zt�μ� � (4)

where Γcusp�αs� � �αs�4π�Γ�1�
cusp, and similarly for γF�αs� and K�z�αs�, with Γ�1�

cusp � 4CF , γ �1�F �

2CF , and K�1��z� � 4CF �z��1� z���. The derivative of the “universal” double logarithmic term,
��αsCF�4π�2L2, in (3) yields the term associated with Γcusp�αs� in (4). Indeed, (4) can be ob-
tained by calculating the renormalization constant for the bilocal operator in (1), and Γcusp�αs�

corresponds to the anomalous dimension of the Wilson line with a cusp (see the discussion above
(3)); γF�αs� represents the anomalous dimension from the two quark fields in (1), combined with
the “hybrid” anomalous dimension that governs the scale dependence of the decay constant F�μ�;
K�z�αs� involves the “plus”-distribution as the DGLAP-type splitting function that originates from
the vertex-type correction diagram associated with the massless degrees of freedom only. It is a
remarkable property in (4) that the evolution kernel is quasilocal, such that the evolution mixes the
LCDA with itself and with the LCDA associated with smaller light-cone separation (see also [7]):
Fourier transforming (4) to the momentum space, we derive the evolution equation for φ��ω �μ� of
(1), and reproduce the result obtained in [4], which mixes φ��ω �μ� with φ��ω ��μ� over the entire
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region, 0 � ω�ω� � ∞ [4, 8]. In contrast to the case of the DAs for the light mesons, we cannot de-
rive the moment-space representation of (4), because the presence of L prevents us from performing
the Taylor expansion about t � 0. Thus, the evolution equation for the B-meson LCDA manifests
simple geometrical structure as the quasilocality only in the coordinate-space representation (4).

We are able to find exact analytic solution for (4) as [9] (μ0 denotes an initial scale)

φ̃��t�μ� � e� �μ �μ0� �τμ0eγE ��ξ e�1�γE �ξ

Γ�ξ �

� 1

0
dz

�
z

1� z

�1�ξ
φ̃��zt�μ0� � (5)

where �z��1� z��1�ξ corresponds to the renormalization-group improvement of the splitting func-
tion �z��1� z��� in (4), and (β �αs� � μdαs�dμ is the β function)

ξ �

� αs�μ�

αs�μ0�

Γcusp�α�

β �α�
dα � � �μ �μ0� ��

� αs�μ�

αs�μ0�

dα
β �α�

�
Γcusp�α�

� α

αs�μ0�

dα �

β �α ��
� γF�α�

�
� (6)

Fourier transforming (5), we reproduce the evolution derived in the momentum space in [4, 8],
and recognize that our coordinate-space solution (5), inheriting the quasilocal structure from (4),
provides the most compact expression possible for calculating the evolution of the B-meson LCDA.
It is straightforward to see that the first two factors in (5), e� �μ �μ0� �τμ0eγE ��ξ , with (6) are exact
even when the higher-order terms in αs are included in Γcusp�αs� and γF�αs�, representing the
general solution of (4) when K�z�αs�� 0. Thus, we extend (4)-(6) by including the 2-loop cusp
anomalous dimension as Γcusp�αs� � �αs�4π�Γ�1�

cusp � �αs�4π�2Γ�2�
cusp, with Γ�2�

cusp � 4CF ��67�9�
π2�3�CG�10Nf �9�, where Nf denotes the number of flavors; this is useful for accomplishing the

relevant Sudakov resummation: (6) is explicitly given by ξ � �Γ�1�cusp�2β0�Y � � � �, and

� �μ �μ0� �
Γ�1�

cusp

4β 2
0

�
4π

αs�μ0�
�1�Y ��

4π
αs�μ�

�
�

γ�1�F

2β0
Y

�
Γ�1�

cusp

4β 2
0

	
β1

2β0
Y 2 �



Γ�2�

cusp

Γ�1�
cusp

�
β1

β0

��
αs�μ0��αs�μ�

αs�μ0�
�Y

��
� � � � � (7)

where β0 � �11CG�2Nf ��3, β1 � �34C2
G�10CGNf ��3�2CFNf are the first two coefficients of the

β function, Y � ln�αs�μ0��αs�μ��, and the ellipses are down by αs. The Sudakov-type enhance-
ment, induced by

� α
αs�μ0�

dα ��β �α �� � 1�α in (6), makes the 2-loop cusp anomalous dimension

Γ�2�
cusp contribute to (7) at the same level as γ�1�F . We take into account the corresponding effect of

Γ�2�
cusp according to consistent order counting, i.e., by a systematic “logarithmic expansion” of (5) up

to the next-to-leading logarithmic (NLL) accuracy, treating �β0αs�μ��2π� ln�μ�μ0� as O�1� [9].
Now, we evaluate (3) as the “initial” LCDA at the scale μ � 1 GeV � μ0, and evolve this

result using (5) to higher scale μ �


mbΛQCD, relevant to the factorization formula for exclusive
B decays. We calculate (3) and (5) for imaginary light-cone separation, performing the Wick ro-
tation t ��iτ [7, 6]. For the HQET parameters in (3), we use Λ̄ � Λ̄DA�μ� �1��7�16π�CF αs��

�9�8π�μCF αs, with Λ̄DA�μ0� � 0�52 GeV, and λ2
E�μ0� � 0�11 GeV2, λ 2

H�μ0� � 0�18 GeV2, fol-
lowing our previous work [6]. We obtain model-independent description of the B-meson LCDA
φ̃OPE
� ��iτ �μ0� for τ � 1�μ0 � 1 GeV�1, which is displayed by the solid line in Fig. 1 (a). This

result can be substituted directly into (5) as the input LCDA for the case with τ � 1 GeV�1, be-
cause zτ  τ � 1 GeV�1 � 1�μ0 in the integrand, reflecting the quasilocal nature. We obtain the

4
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Figure 1: The evolution of the B-meson LCDA based on the coordinate-space formula (5) using (a)
φ̃OPE
� ��iτ�μ0� of (3) and (b) its extension with (8), respectively, as the input DA shown by the solid curve.

dashed line in Fig. 1 (a) as the full result of the LCDA φ̃���iτ �μ� at μ � 2�5 GeV by our NLL
evolution (5). When we omit the term with K�z�αs� in (4), the resultant evolution yields the dot-
dashed curve. If we omit the other terms at the NLL level further, involving ξ � 0, Γ�2�cusp � 0,

γ�1�F � 0, β1 � 0 in (5), we obtain the dotted curve as the result of the evolution at the LL accuracy.
We see the considerable Sudakov suppression not only at the LL level but also at the NLL level;
in particular, at the NLL level, the suppression arises in the moderate τ regions, while the DA is
enhanced for small τ . On the other hand, the DGLAP-type splitting function contributes to shifting
the distribution from small to moderate τ , as a result of the integral over z in (5). Our full result,
the dashed curve, is useful for providing the model-independent behavior of the B-meson LCDA in
small and moderate τ regions presented in Fig. 1 (a).

Apparently, the OPE form (3), used for the input DA, breaks down in the large τ region. We
rely on a model function to describe the DA in the large τ region dominated by the nonperturbative
effects, and, specifically, we use the following form of the input DA for the entire range of τ [6],

φ̃���iτ �μ0� � θ�τc� τ�φ̃OPE
� ��iτ �μ0��θ�τ� τc�

N
�τω0 �1�2 � (8)

with τc � 1�μ0, where the second term represents a model for the large τ behavior, whose simple
form was also adopted in [8] as a nonperturbative component to model the B-meson LCDA using
the information from the OPE with the local operators of dimension d  4 and the NLO correc-
tions to the corresponding Wilson coefficients taken into account. (For the difference between our
OPE (3) and the OPE derived in [8], see [6].) The two parameters N and ω0 are determined by the
continuity of (8) and its derivative at τ � τc. The resulting values, N � 0�86 and ω0 � 0�31 GeV,
are found to be stable under the variation of τc for 0�6 GeV�1 � τc � 1 GeV�1, and so is the be-
havior of the corresponding DA (8) [6]. Taking τc � 1 GeV�1, the solid curve in Fig. 1 (a) is now
continued to the τ � 1 GeV�1 region with (8), as presented by the solid curve in Fig. 1 (b). Using
this as the input DA in (5), we get the other curves in Fig. 1 (b), which are evolved in the same way
as the corresponding curves in Fig. 1 (a). Note, the behaviors of those new curves in the region
τ  τc � 1 GeV�1 are not contaminated under evolution by the model behavior for larger distances.
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λ�1
B �μ� [GeV�1]

μ [GeV] Eq. (9) with Eqs. (5), (8) Lee-Neubert [8] Braun et al. [7]

1.0 2�7 �0�6�2�1� 2.1 2.2
1.5 2�4 �0�6�1�8� 1.9
2.0 2�2 �0�5�1�7� 1.7
2.5 2�1 �0�5�1�6� 1.6

Table 1: The inverse moment λ �1
B �μ� of (9). The results obtained by other works are also shown.

Integrating the dashed curve in Fig. 1 (b) over τ , we get the first inverse moment of the LCDA,

λ�1
B �μ��

� ∞

0
dω

φ��ω �μ�
ω

�

� τc

0
dτφ̃���iτ �μ��

� ∞

τc

dτφ̃���iτ �μ� � (9)

at the scale μ � 2�5 GeV, as the sum of the model-independent and -dependent contributions, the
first and second terms in the RHS. λ�1

B �μ� with μ �


mbΛQCD arises in the factorization formula
for exclusive B decays [1, 2]. Table 1 shows the results for μ � 2�5 GeV and other values of
μ , with the first and second numbers in the parentheses denoting the contributions from the first
and second terms in (9). The evolution decreases λ�1

B �μ�, in particular, through the decrease of
the model-dependent contribution, and the larger value of λ�1

B �μ0� leads to the larger λ�1
B �μ�

for μ �


mbΛQCD; as emphasized in [6], our larger λ�1
B �μ0� than the corresponding values of

other works [8, 7] originates from the novel contribution of λ2
E and λ2

H in (3), associated with the
dimension-5 three-particle operators.

Finally, we note the simple form of our solution (5) allows us to express (9) compactly as [9]

λ�1
B �μ� �

e� �μ �μ0���1�γE�ξ

Γ�1�ξ �

� ∞

0
dτ�τμ0eγE ��ξ φ̃���iτ �μ0� � (10)

Combined with the τ � 0 and τ � ∞ behaviors of φ̃���iτ �μ0�, as indicated respectively by (3)
and [3], this integral proves to converge for ξ � 1, which is satisfied for all relevant cases.
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