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1. Introduction

In the Standard Model, the flavor-changing neutral current processb → Xsl+l− only occurs at
the one-loop level and is therefore sensitive to new physics. In the kinematical region where the
lepton invariant mass squaredq2 is far away from thecc̄-resonances, the dilepton invariant mass
spectrum and the forward-backward asymmetry can be precisely predicted using largemb expan-
sion, where the leading term is given by the partonic matrix element of the effective Hamiltonian

He f f = −4GF√
2

V ∗
tsVtb

10

∑
i=1

Ci(µ)Oi(µ). (1.1)

We neglect the CKM combinationV ∗
usVub and the operator basis is defined as in [1]. In [2] we

published the first analytic NNLL calculation of the highq2 region of the matrix elements of the
operators

O1 = (s̄LγµT acL)(c̄LγµT abL), O2 = (s̄LγµcL)(c̄LγµbL) , (1.2)

which dominate the NNLL amplitude numerically. Earlier these results were only available analyt-
ically in the region of lowq2 [3, 4]. Using equations of motion the NNLL matrix elements ofthe
effective operators take the form

〈sℓ+ℓ−|Oi|b〉2-loops= −
(αs

4π

)2[

F(7)
i 〈O7〉tree+ F(9)

i 〈O9〉tree

]

, (1.3)

whereO7 = e/g2
s mb(s̄Lσ µνbR)Fµν andO9 = e2/g2

s (s̄LγµbL)∑l(l̄γµ l).

2. Calculations
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Figure 1: Diagrams that have to be taken into account at orderαs. The circle-crosses denote the possible
locations where the virtual photon is emitted (see text).

The diagrams contributing at orderαs are shown in Figure 1. We setms = 0 and define

ŝ =
q2

m2
b

and z =
m2

c

m2
b

, (2.1)

2



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
2
9

b → sℓ+ℓ− in the high q2 region at two-loops Volker Pilipp

whereq is the momentum of the virtual photon. After reducing occurring tensor-like Feynman
integrals [5] the remaining scalar integrals can be furtherreduced to master integrals using integra-
tion by parts (IBP) identities [6]. Considering the region ˆs > 4z, we expanded the master integrals
in z and kept the full analytic dependence in ˆs.

For power expanding Feynman integrals we use a combination of method of regions [7] and
differential equation techniques [8, 9]: Consider a set of Feynman integralsI1, . . . , In depending on
the expansion parameterz and related by a system of differential equations obtained by differenti-
ating Iα with respect toz and applying IBP identities:

d
dz

Iα = ∑
β

hαβ Iβ + gα , (2.2)

wheregα contains simpler integrals which pose no serious problems.Expanding both sides of (2.2)
in ε , z and lnz

Iα = ∑
i, j,k

I( j,k)
α ,i ε iz j(lnz)k, hαβ = ∑

i, j
h( j)

αβ ,iε
iz j, gα = ∑

i, j,k

g( j,k)
α ,i ε iz j(lnz)k, (2.3)

and inserting (2.3) into (2.2) we obtain algebraic equations for the coefficientsI( j,k)
α ,i

0 = ( j +1)I( j+1,k)
α ,i +(k +1)I( j+1,k+1)

α ,i −∑
β

∑
i′

∑
j′

h( j′)
αβ ,i′ I

( j− j′,k)
β ,i−i′ −g( j,k)

α ,i . (2.4)

This enables us to recursively calculate higher powers ofz once the leading powers are known. In
practice this means that we need theI(0,0)

α ,i and sometimes also theI(1,0)
α ,i as initial condition to (2.4).

These initial conditions can be computed using method of regions. A non trivial check is provided
by the fact that the leading terms containing logarithms ofz can be calculated by both method of
regions and the recurrence relation (2.4).

The summation indexj in (2.3) can take integer or half-integer values, dependingon the
specific set of integralsIα . In order to determine the possible powers ofz and ln(z) we used the
algorithm described in [9]. A givenD-dimensionalL-loop Feynman integralI(z) reads in Feynman
parameterization

I(z) = (−1)N
(

i

(4π)D/2

)L

Γ(N −LD/2)

∫

dNxδ (1−
N

∑
n=1

xn)
UN−(L+1)D/2

(zF1 + F2)N−LD/2
, (2.5)

whereU , F1 andF2 are polynomials inxn. Using Mellin-Barnes representation (2.5) can be cast
into the following form

I(z) =(−1)N
(

i

(4π)D/2

)L 1
2πi

∫ i∞

−i∞
dszsΓ(−s)Γ(s+ N −LD/2)

×
∫

dNxδ (1−
N

∑
n=1

xn)U
N−(L+1)D/2Fs

1F−s−N+LD/2
2 . (2.6)

By closing the integration contour overs to the right hand side the poles on the positive real axis
turn into powers ofz. If we apply the technique ofsector decomposition [10] to (2.6) we end up
with terms of the following form

N

∑
l=1

∑
k

∫ 1

0
dN−1t

(

N−1

∏
j=1

t
A j−B jε−C js
j

)

UN−(L+1)D/2
lk Fs

1,lkF−s−N+LD/2
2,lk , (2.7)
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whereUlk, F1,lk andF2,lk contain terms that are constant in~t. From (2.7) we can read off that the
poles ins are located at:

s jn =
1+ n+ A j −B jε

C j
, (2.8)

wheren ∈ N0.

Additionally, the procedure described above allows us to evaluate the coefficients of the expan-
sion inz numerically which we used to again test the initial conditions of the differential equations.

3. Results

In order to get accurate results we keep terms up toz10. Our results agree with the previous
numerical calculation [11] within less than 1% difference.To demonstrate the convergence of the
power expansions, we show in Figure 2 the form factors definedin (1.3) as functions of ˆs, where
we include all orders up toz6, z8 andz10. We use as default valuez = 0.1 such that thecc̄-threshold
is located at ˆs = 0.4. One sees from the figures that far away from thecc̄-threshold, i.e. for ˆs > 0.6,
the expansions for all form factors are well behaved.

The impact of our results on the perturbative part of the highq2-spectrum [3]

R(ŝ) =
1

Γ(B̄ → Xce−ν̄e)

dΓ(B̄ → Xsℓ
+ℓ−)

dŝ
(3.1)

is shown in Figure 3 (left), where we used the same parametersas in [2]. The finite bremsstrahlung
corrections calculated in [4] are neglected. From Figure 3 (left) we conclude that forµ = mb the
contributions of our results lead to corrections of the order 10%−15%. IntegratingR(ŝ) over the
high ŝ region, we define

Rhigh =
∫ 1

0.6
dŝR(ŝ). (3.2)

Figure 3 (right) shows the dependence of the perturbative part of Rhigh on the renormalization scale.
We obtain

Rhigh,pert= (0.43±0.01(µ))×10−5, (3.3)

where we determined the error by varyingµ between 2 GeV and 10 GeV. The corrections due to
our results lead to a decrease of the scale dependence to 2%.
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Figure 2: Real and imaginary parts of the form factorsF(7,9)
1,2 as functions of ˆs. To demonstrate the conver-

gence of the expansion inz we included all orders up toz6, z8 andz10 in the dotted, dashed and solid lines
respectively. We putµ = mb and used the default valuez = 0.1.

5



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
2
9

b → sℓ+ℓ− in the high q2 region at two-loops Volker Pilipp

0

0.5

1

1.5

2

2.5

3

3.5

0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
(ŝ

)[
10

−
5
]

ŝ
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Figure 3: Perturbative part ofR(ŝ) (left) andRhigh (right) at NNLL. The solid lines represents the NNLL
result, whereas in the dotted lines the orderαs corrections to the matrix elements associated withO1,2 are
switched off. In the left figure we useµ = mb. See text for details.
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