PROCEEDINGS OF SCIENCE

$b \rightarrow s \ell^{+} \ell^{-}$in the high q^{2} region at two-loops

Volker Pilipp*, Christof Schüpbach

Albert Einstein Center for Fundamental Physics
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
E-mail: volker.pilipp@itp.unibe.ch, christof.schuepbach@itp.unibe.ch

We report on the first analytic NNLL calculation for the matrix elements of the operators O_{1} and O_{2} for the inlusive process $b \rightarrow X_{s} l^{+} l^{-}$in the kinematical region $q^{2}>4 m_{c}^{2}$, where q^{2} is the invariant mass squared of the lepton-pair

RADCOR 2009-9th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology)
October 25-30 2009
Ascona, Switzerland

[^0]
1. Introduction

In the Standard Model, the flavor-changing neutral current process $b \rightarrow X_{s} l^{+} l^{-}$only occurs at the one-loop level and is therefore sensitive to new physics. In the kinematical region where the lepton invariant mass squared q^{2} is far away from the $c \bar{c}$-resonances, the dilepton invariant mass spectrum and the forward-backward asymmetry can be precisely predicted using large m_{b} expansion, where the leading term is given by the partonic matrix element of the effective Hamiltonian

$$
\begin{equation*}
\mathscr{H}_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) O_{i}(\mu) \tag{1.1}
\end{equation*}
$$

We neglect the CKM combination $V_{u s}^{*} V_{u b}$ and the operator basis is defined as in [1]. In [2] we published the first analytic NNLL calculation of the high q^{2} region of the matrix elements of the operators

$$
\begin{equation*}
O_{1}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}\right), \quad O_{2}=\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \tag{1.2}
\end{equation*}
$$

which dominate the NNLL amplitude numerically. Earlier these results were only available analytically in the region of low $q^{2}[3,4]$. Using equations of motion the NNLL matrix elements of the effective operators take the form

$$
\begin{equation*}
\left\langle s \ell^{+} \ell^{-}\right| O_{i}|b\rangle_{2 \text {-loops }}=-\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[F_{i}^{(7)}\left\langle O_{7}\right\rangle_{\text {tree }}+F_{i}^{(9)}\left\langle O_{9}\right\rangle_{\text {tree }}\right], \tag{1.3}
\end{equation*}
$$

where $O_{7}=e / g_{s}^{2} m_{b}\left(\bar{s}_{L} \sigma^{\mu v} b_{R}\right) F_{\mu v}$ and $O_{9}=e^{2} / g_{s}^{2}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{l}\left(\bar{l} \gamma^{\mu} l\right)$.

2. Calculations

a)

b)

c)

d)

e)

f)

Figure 1: Diagrams that have to be taken into account at order α_{s}. The circle-crosses denote the possible locations where the virtual photon is emitted (see text).

The diagrams contributing at order α_{s} are shown in Figure 1. We set $m_{s}=0$ and define

$$
\begin{equation*}
\hat{s}=\frac{q^{2}}{m_{b}^{2}} \quad \text { and } \quad z=\frac{m_{c}^{2}}{m_{b}^{2}}, \tag{2.1}
\end{equation*}
$$

where q is the momentum of the virtual photon. After reducing occurring tensor-like Feynman integrals [5] the remaining scalar integrals can be further reduced to master integrals using integration by parts (IBP) identities [6]. Considering the region $\hat{s}>4 z$, we expanded the master integrals in z and kept the full analytic dependence in \hat{s}.

For power expanding Feynman integrals we use a combination of method of regions [7] and differential equation techniques [8, 9]: Consider a set of Feynman integrals I_{1}, \ldots, I_{n} depending on the expansion parameter z and related by a system of differential equations obtained by differentiating I_{α} with respect to z and applying IBP identities:

$$
\begin{equation*}
\frac{d}{d z} I_{\alpha}=\sum_{\beta} h_{\alpha \beta} I_{\beta}+g_{\alpha} \tag{2.2}
\end{equation*}
$$

where g_{α} contains simpler integrals which pose no serious problems. Expanding both sides of (2.2) in ε, z and $\ln z$

$$
\begin{equation*}
I_{\alpha}=\sum_{i, j, k} I_{\alpha, i}^{(j, k)} \varepsilon^{i} z^{j}(\ln z)^{k}, \quad h_{\alpha \beta}=\sum_{i, j} h_{\alpha \beta, i}^{(j)} \varepsilon^{i} z^{j}, \quad g_{\alpha}=\sum_{i, j, k} g_{\alpha, i}^{(j, k)} \varepsilon^{i} z^{j}(\ln z)^{k} \tag{2.3}
\end{equation*}
$$

and inserting (2.3) into (2.2) we obtain algebraic equations for the coefficients $I_{\alpha, i}^{(j, k)}$

$$
\begin{equation*}
0=(j+1) I_{\alpha, i}^{(j+1, k)}+(k+1) I_{\alpha, i}^{(j+1, k+1)}-\sum_{\beta} \sum_{i^{\prime}} \sum_{j^{\prime}} h_{\alpha \beta, i^{\prime}}^{\left(j^{\prime}\right)} I_{\beta, i-i^{\prime}}^{\left(j-j^{\prime}, k\right)}-g_{\alpha, i}^{(j, k)} \tag{2.4}
\end{equation*}
$$

This enables us to recursively calculate higher powers of z once the leading powers are known. In practice this means that we need the $I_{\alpha, i}^{(0,0)}$ and sometimes also the $I_{\alpha, i}^{(1,0)}$ as initial condition to (2.4). These initial conditions can be computed using method of regions. A non trivial check is provided by the fact that the leading terms containing logarithms of z can be calculated by both method of regions and the recurrence relation (2.4).

The summation index j in (2.3) can take integer or half-integer values, depending on the specific set of integrals I_{α}. In order to determine the possible powers of z and $\ln (z)$ we used the algorithm described in [9]. A given D-dimensional L-loop Feynman integral $I(z)$ reads in Feynman parameterization

$$
\begin{equation*}
I(z)=(-1)^{N}\left(\frac{i}{(4 \pi)^{D / 2}}\right)^{L} \Gamma(N-L D / 2) \int d^{N} x \delta\left(1-\sum_{n=1}^{N} x_{n}\right) \frac{U^{N-(L+1) D / 2}}{\left(z F_{1}+F_{2}\right)^{N-L D / 2}}, \tag{2.5}
\end{equation*}
$$

where U, F_{1} and F_{2} are polynomials in x_{n}. Using Mellin-Barnes representation (2.5) can be cast into the following form

$$
\begin{align*}
I(z)= & (-1)^{N}\left(\frac{i}{(4 \pi)^{D / 2}}\right)^{L} \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d s z^{s} \Gamma(-s) \Gamma(s+N-L D / 2) \\
& \times \int d^{N} x \delta\left(1-\sum_{n=1}^{N} x_{n}\right) U^{N-(L+1) D / 2} F_{1}^{s} F_{2}^{-s-N+L D / 2} \tag{2.6}
\end{align*}
$$

By closing the integration contour over s to the right hand side the poles on the positive real axis turn into powers of z. If we apply the technique of sector decomposition [10] to (2.6) we end up with terms of the following form

$$
\begin{equation*}
\sum_{l=1}^{N} \sum_{k} \int_{0}^{1} d^{N-1} t\left(\prod_{j=1}^{N-1} t_{j}^{A_{j}-B_{j} \varepsilon-C_{j} s}\right) U_{l k}^{N-(L+1) D / 2} F_{1, l k}^{s} F_{2, l k}^{-s-N+L D / 2} \tag{2.7}
\end{equation*}
$$

where $U_{l k}, F_{1, l k}$ and $F_{2, l k}$ contain terms that are constant in \vec{t}. From (2.7) we can read off that the poles in s are located at:

$$
\begin{equation*}
s_{j n}=\frac{1+n+A_{j}-B_{j} \varepsilon}{C_{j}}, \tag{2.8}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}$.
Additionally, the procedure described above allows us to evaluate the coefficients of the expansion in z numerically which we used to again test the initial conditions of the differential equations.

3. Results

In order to get accurate results we keep terms up to z^{10}. Our results agree with the previous numerical calculation [11] within less than 1% difference. To demonstrate the convergence of the power expansions, we show in Figure 2 the form factors defined in (1.3) as functions of \hat{s}, where we include all orders up to z^{6}, z^{8} and z^{10}. We use as default value $z=0.1$ such that the $c \bar{c}$-threshold is located at $\hat{s}=0.4$. One sees from the figures that far away from the $c \bar{c}$-threshold, i.e. for $\hat{s}>0.6$, the expansions for all form factors are well behaved.

The impact of our results on the perturbative part of the high q^{2}-spectrum [3]

$$
\begin{equation*}
R(\hat{s})=\frac{1}{\Gamma\left(\bar{B} \rightarrow X_{c} e^{-} \bar{v}_{e}\right)} \frac{d \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s}} \tag{3.1}
\end{equation*}
$$

is shown in Figure 3 (left), where we used the same parameters as in [2]. The finite bremsstrahlung corrections calculated in [4] are neglected. From Figure 3 (left) we conclude that for $\mu=m_{b}$ the contributions of our results lead to corrections of the order $10 \%-15 \%$. Integrating $R(\hat{s})$ over the high \hat{s} region, we define

$$
\begin{equation*}
R_{\mathrm{high}}=\int_{0.6}^{1} d \hat{s} R(\hat{s}) \tag{3.2}
\end{equation*}
$$

Figure 3 (right) shows the dependence of the perturbative part of $R_{\text {high }}$ on the renormalization scale. We obtain

$$
\begin{equation*}
R_{\text {high,pert }}=(0.43 \pm 0.01(\mu)) \times 10^{-5} \tag{3.3}
\end{equation*}
$$

where we determined the error by varying μ between 2 GeV and 10 GeV . The corrections due to our results lead to a decrease of the scale dependence to 2%.

Acknowledgments

This work is partially supported by the Swiss National Foundation, by EC-Contract MRTNCT-2006-035482 (FLAVIAnet) and by the Helmholtz Association through funds provided to the virtual institute "Spin and strong QCD" (VH-VI-231). The Albert Einstein Center for Fundamental Physics is supported by the "Innovations- und Kooperationsprojekt C-13 of the Schweizerische Universitätskonferenz SUK/CRUS".

Figure 2: Real and imaginary parts of the form factors $F_{1,2}^{(7,9)}$ as functions of \hat{s}. To demonstrate the convergence of the expansion in z we included all orders up to z^{6}, z^{8} and z^{10} in the dotted, dashed and solid lines respectively. We put $\mu=m_{b}$ and used the default value $z=0.1$.

Figure 3: Perturbative part of $R(\hat{s})$ (left) and $R_{\text {high }}$ (right) at NNLL. The solid lines represents the NNLL result, whereas in the dotted lines the order α_{s} corrections to the matrix elements associated with $O_{1,2}$ are switched off. In the left figure we use $\mu=m_{b}$. See text for details.

References

[1] C. Bobeth, M. Misiak and J. Urban, Nucl. Phys. B574, 291 (2000).
[2] C. Greub, V. Pilipp and C. Schüpbach, JHEP 0812, 040 (2008).
[3] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, Phys. Rev. D65, 074004 (2002).
[4] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, Phys. Rev. D66, 034009 (2002).
[5] G. Passarino and M. J. G. Veltman, Nucl. Phys. B160, 151 (1979).
[6] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159 (1981); F. V. Tkachov, Phys. Lett. B100, 65 (1981).
[7] M. Beneke and V. A. Smirnov, Nucl. Phys. B522, 321 (1998); S. G. Gorishnii, Nucl. Phys. B319, 633 (1989); V. A. Smirnov, Commun. Math. Phys. 134, 109 (1990); V. A. Smirnov, Springer Tracts Mod. Phys. 177, 1 (2002).
[8] R. Boughezal, M. Czakon and T. Schutzmeier, JHEP 09, 072 (2007); A. V. Kotikov, Phys. Lett. B254, 158 (1991); V. Pilipp, Nucl. Phys. B794, 154 (2008); E. Remiddi, Nuovo Cim. A110, 1435 (1997).
[9] V. Pilipp, JHEP 09, 135 (2008).
[10] T. Binoth and G. Heinrich, Nucl. Phys. B 585, 741 (2000).
[11] A. Ghinculov, T. Hurth, G. Isidori and Y. P. Yao, Nucl. Phys. B685, 351 (2004).

[^0]: *Speaker.

