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The deep inelastic scattering (DIS) experiments provide rich information on the strong interac-
tion physics which is governed by quantum chromodynamics (QCD). The predictions of QCD both
in perturbative as well as non-perturbative regions are found to be in excellent agreement with the
experiments. QCD provides a framework to successfully compute hadronic cross sections through
factorisation theorem [1]. Using this, one can express the hard scattering cross sections in terms
of perturbatively calculable partonic cross sections convoluted with non-perturbative parton distri-
bution functions. The Higgs production cross section through gluon fusion in hadron collisions is
given by

σ H(S,m2
H) =

πG2
B

8(N2 −1) ∑
a,b=q,q,g

∫ 1

x
dy Φab(y,µ2

F ) ∆H
ab

(

x
y
,m2

H ,µ2
F ,µ2

R

)

(1)

where x = m2
H/S, N = 3 and the factor GB can be found from [2]. The flux Φab(y,µ2

F ) is given by

Φab(y,µ2
F ) =

∫ 1

y

dw
w

fa(w,µ2
F) fb

( y
w

,µ2
F

)

(2)

The partonic cross section ∆H
ab contains both soft plus virtual as well as hard contributions:

∆H
ab(z,m

2
H ,µ2

R,µ2
F ) = ∆sv

g,S(z,m
2
H ,µ2

R,µ2
F )+∆H,hard

ab (z,m2
H ,µ2

R,µ2
F) (3)

In the above equation, coefficient functions ∆H
ab are nothing but the mass factorised partonic

cross sections resulting from the scattering of partons of types a,b and the parton distribution
function of the parton of type a in the proton is given by fa/P. The factorisation scale µF separates
this perturbative region from the non-perturbative effects. The superscript sv means soft plus virtual
and hard means the remaining contribution. The ∆H

ab can be expanded in powers of strong coupling
constant gs as

∆H
ab(z,m

2
H ,µ2

R,µ2
F ) = ∑

i=0

ai
s(µ2

R)∆H,(i)
ab (z,µ2

F ,m2
H ,µ2

R) (4)

where as(µ2
R) = g2

s/16π2 with µR being renormalisation scale. The parton distribution functions
are not calculable within perturbative theory, but their evolution with respect to the scale µF is
completely determined by renormalisation group equations:

µ2
F

d

dµ2
F

fa/P(x,µ2
F ) = ∑

b

Pab(x,µ2
F )⊗ fb/P(x,µ2

F ) (5)

where the perturbatively calculable DGLAP splitting functions are given by

Pab(x,µ2
F ) = ∑

i=0

ai+1
s (µ2

F)Pi
ab(x) (6)

The coefficient functions ∆H
ab, beyond leading order in as, receive contributions from virtual

as well as real emission processes. They are often sensitive to soft gluons through large logarithms
that result from the cancellation of soft singularities arising from massless gluons in both virtual
and real emission processes. They are of the form (logi(1− x)/(1− x))+ distributions and hence
dominate in the threshold region, namely x → 1. We also get sub-leading contributions through the
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logarithms log j(1−x) that arise from the region near collinear partons. Recall that the collinear sin-
gularities are removed using mass factorisation. Since the soft gluons dominate the cross sections
in the threshold region, they need to be resummed to make reliable predictions. It can be done sys-
tematically using factorisation theorem and renormalisation group invariance. This resummation
goes under the name soft-gluon exponentiation [3] and it is known to the next-to-next-to-next-to-
leading logarithmic (N3LL) accuracy for inclusive DIS [4], Drell-Yan and Higgs productions in
proton-proton collisions [5, 6, 7, 8], and semi-inclusive electron-positron annihilation [9, 10]. It
is not clear whether such a resummed result also contains correct sub-leading logarithmic terms.
In other words, one might want to know whether resummation of sub-leading logarithms is possi-
ble. The recent works [11, 12] have shown that systematic predictions for higher-order coefficient
functions fail for the sub-leading logarithms.

In the article [13], it is shown that using the known coefficient-function results of Refs. [14,
15, 16, 17, 18, 19, 20, 21, 22, 23], the non-singlet physical kernels show only a single logarithmic
enhancement at least to the next-to-next-to-leading or next-to-next-to-next-to-leading order (NNLO
or N3LO) in the expansion in as and further it is conjectured that this behaviour will persist to all
orders in as.

In this article we study how far the soft gluon resummed result can predict the sub-leading
logarithms and how it can be improved to account for the mismatch. The soft plus virtual part
∆sv

ab(z,q
2,µ2

F ) receives contributions from purely virtual processes as well as processes involving
at least one real emission. The former can be obtained from the form factors F̂q of vector current
between on-shell quark /antiquark states, while the later, denoted by ΦS arises when at least one of
the real gluons becomes soft. While the sum of these contributions is free of singularities coming
from the soft gluons, there will be collinear divergences resulting from massless partons. They are
removed using the DGLAP kernels, Γqq through mass factorisation. Hence we have,

∆sv
ab(z,q

2,µ2
R,µ2

F) = C exp

(

ΨS(z,q
2,µ2

R,µ2
F ,ε)

)
∣

∣

∣

∣

∣

ε=0

(7)

where ΨS(z,q2,µ2
R,µ2

F ,ε) is a finite distribution, the symbol S stands for "soft". Here ΨS(z,q2,µ2
R,µ2

F ,ε)

is computed in 4+ ε dimensions.

ΨS(z,q
2,µ2

R,µ2
F ,ε) =

(

ln
∣

∣F̂q(âs,Q
2,µ2,ε)

∣

∣

2

)

δ (1− z)+2 ΦS(âs,q
2,µ2,z,ε)

−2C lnΓqq(âs,µ2,µ2
F ,z,ε), (8)

In the above equation, we have introduced C to indicate that the normal products should be replaced
by convolutions when the exponential and logarithms appearing in eqn.(8) are expanded in powers
of as. In the above equation, F̂q and ΦS are known to all orders in ε at one loop level. At two
loop level, Fq and ΦS are known to order ε0. The three loop results for F̂q is available to order ε0

while for ΦS, the finite part (ε0) is still unknown at three loop level. Γqq being the MS counter term
for the collinear singularities is function of 1/ε alone and it is computed to three loop level. The
resummed cross section ∆ab correctly reproduces soft plus virtual part of the cross section in terms
of δ (1− z) and (logi(1− z)/(1− z))+ distributions. In order to check how far the above resummed
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result can predict sub-leading logarithms, we have expanded the exponential in powers of as and
expanded all the convolutions to order (1− z)0 including all powers of log(1− z). For the DGLAP
splitting function, Pqq that enters in the kernel Γqq, we used the following expansion:

Pqq = 2

(

Aq(as)

(1− z)+
+Bq(as)δ (1− z)+Cq(as) log(1− z)+Dq(as)

)

+O(1− z) (9)

where Aq,Bq,Cq and Dq are known upto three loop level. Such a naive replacement in the resumma-
tion formula reproduces largest power of the log(1− z) at every order in as, namely it predicts the
coefficient of a j

s log2 j−1(1−z) is zero for all j. On the other hand, it fails to predict a j
s log2 j−k(1−z)

for 2 j ≤ k > 1. In the following we modify ΦS such that we correctly reproduce a j
s log2 j−k(1− z)

from the resummation formula. In this approach, we include terms ai
s ∑i

j=0 E(i)
j log j(1− z) at ith

order in as. We fix the coefficient E (i)
j by comparing with the fixed results for coefficient functions.

The exponent that includes sub-leading logarithms is given by ΦS → ΦS,

ΦS(z,q
2,µ2

R,µ2
F ,ε) =

∞

∑
i=1

âi
s

(

q2(1− z)2

zµ2

)i ε
2

Si
ε (i ε)

[

φ (i)(ε)

1− z
+

i

∑
j=0

E(i)
j log j(1− z)

]

(10)

In the above equation, φ̂ (i)(ε) is given by

φ̂ (i)(ε) =
1
iε

[

K
(i)

(ε)+G
(i)

(ε)

]

(11)

where the constants K
(i)

,G
(i)

can be found in [8] and E (i)
j are determined by comparing known

against fixed order result. Notice that the sum over j is controlled by the order of the perturbation
denoted by the index i. This structure clearly indicates the failure of the resummation of sub-
leading logarithms if we use naive approach. To summarise, we have checked explictly that the
predictions of standard resummation formula does not give the correct sub-leading logarithms and
a modification of the kind discussed in this article does not have predictive power.
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