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MS, combined with dimensional regularization, is one of themost popular and practical renor-

malization scheme in quantum field theory. One of the drawbacks of this scheme is however that

undesired infrared contributions hide in the short-distance calculations and manifest themselves

as the so called renormalon ambiguities. We have found a simple way to remove these terms

which retains the properties of calculation ofMS. The subtraction requires the introduction of a

new cutoff scale,R, that controls power divergences. The variation of the finalresult withR is

solved with an appropriate differential equation, very similar to the usual Renormalization Group

equations. The evolution so defined is called R-evolution. We illustrate the application to Ellis-

Jaffe sum rule.
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One of the major instrument for calculations in particle physics is the operator product expan-
sion (OPE). The program of the OPE consists in factorizing contributions which can be calculated
with perturbation theory from matrix elements which need either an experimental determination or
non-perturbative methods. The perturbative calculationsare meaningful at an energy scaleQ which
is much bigger thenΛQCD, the energy scale at which non-perturbative effects becomeimportant. In
the Wilsonian OPE, the observables are factorized using a cutoff, or factorization scale,Λf , where
ΛQCD < Λf < Q, and are expanded inΛQCD/Q. Consider a dimensionless observableσ whose
OPE is

σ = CW
0 (Q,Λf )θW

0 (Λf )+CW
1 (Q,Λf )

θW
1 (Λf )

Qp + . . . . (1)

The CW
0,1 are dimensionless Wilson coefficients containing contributions from momentak > Λf

with perturbative expansions inαs, andθW
0,1 = 〈O0,1〉W are non-perturbative matrix element with

mass dimensions 0 andp, containing contributions fromk < Λf . CW
0,1(Q,Λf ) contain an infinite

series of terms,(Λf /Q)n, modulo lnm(Λf /Q) terms, and this reflects the fact thatCW
0,1 only include

contributions from momentak > Λf . The hard scaleQ is contained only in the Wilson coefficients.
The Wilsonian OPE provides a separation of momentum scales,but it is difficult to defineΛf , retain
gauge symmetry and Lorentz invariance, and perturbative computations beyond one-loop are very
difficult. The calculations are easier in dimensional regularization and theMS renormalization
scheme preserves symmetries almost automatically. Eq. (1)becomes

σ = C̄0(Q,µ)θ̄0(µ)+C̄1(Q,µ)
θ̄1(µ)

Qp + . . . , (2)

whereµ is the renormalization scale and bars are used forMS quantities. InMS theC̄i are simple
series inαs. CW

i (Q,Λf ) andC̄j(Q,µ) are perturbatively related to each other, so Eqs. (1) and (2)
are just the same OPE in two different schemes. The renormalization scaleµ in MS plays the role
of Λf . This is precisely true for logarithmic contributions, lnµ ↔ lnΛf , and here the Wilsonian
picture of scale separation in̄Ci and θ̄i carries over: the Wilson coefficients contain powers of
lnn µ/Q and matrix elements powers of lnn′ µ/ΛQCD such that allµ-dependence is finally canceled
in eq. (2). For a generic value ofµ both lnµ/Q and lnµ/ΛQCD can be big. The usual solution of
this problem is to resum all lnµ/Q using renormalization group equations (RGE) so that the choice
ΛQCD . µ ≪ Q can be made and a convergent result is obtained.

The same is not true for power law dependences onΛf . The integrations in dimensional
regularization are carried out over all momenta and the subtractions ofMS allow C̄i to contain
some contributions from arbitrary small momenta, and theθ̄i to have contributions from arbi-
trary large momenta. While this simplifies higher order computations, it leads to factorial growth
in the perturbative coefficients. In̄C0, the dominant term in the coefficient of[αs(µ)/(4π)]n is
≃ (µ/Q)p n! [2β0/p]nZ at largen [1], for constantZ. In practice this sometimes leads to poor con-
vergence already at one or two loop order in QCD. This poor behavior is canceled by corresponding
instabilities inθ̄1, and is referred to as an order-p infrared renormalon in̄C0 canceling against an
ultraviolet renormalon in̄θ1 [2, 3, 4]. All these features are related to the fact that theMS OPE
does not strictly separate momentum scales.
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In ref. [10] we have proposed a new method to deal with this pathological behavior of the
MS Wilson coefficients. The renormalization scheme so obtained is called MSR. The new renor-
malization scheme is characterized by a cutoff scale,R, at which the renormalon contribution is
subtracted, and an appropriate differential equation of the new coefficient with respect toR. The
solution of these equations allows a perturbative resummation of logs with a complete renormalon
cancellation.

The subtraction mechanism works as follows. Writing the series

lnC̄0(Q,µ) =
∞

∑
n=1

an(µ/Q)
[αs(µ)

(4π)

]n
, (3)

with an(µ/Q) = ∑k=0 ank lnk µ/Q we define the MSR scheme by the series [10]

lnC0(Q,R,µ) ≡
∞

∑
n=1

{

an
( µ

Q

)

−
Rp

Qpan
(µ

R

)

}αn
s (µ)

(4π)n . (4)

This definition cancels the order-p renormalon for largen [5, 10, 11] due to the power dependence
of the subtracted term. It yields also the very simple relation

C0(Q,R,µ) = C̄0(Q,µ)
[

C̄0(R,µ)
]−(R/Q)p

, (5)

which must be expanded order-by-order inαs(µ) to remove the renormalon. Thus the coefficient
C0(Q,R,µ) for the MSR scheme is obtained directly from theMS result. Note thatC0(Q,Q,µ) = 1
to all orders. The appropriatep is obtained from theMS OPE byp=dimension(̄θ1)− dimension(̄θ0).
MSR preserves gauge invariance, Lorentz symmetry, and the simplicity of MS.

The appropriate values forR are constrained by power counting and the structure of large
logs in the OPE. The power countinḡθ1 ∼ Λp

QCD implies θ1 ∼ Λp
QCD, so for the matrix element

we needR= R0 ∼ µ & ΛQCD (meaning a larger value where perturbation theory for the OPE still
converges), which minimizes ln(µ/ΛQCD) and ln(µ/R) terms inθ1(R,µ ,ΛQCD). On the other
hand,C0(Q,R,µ) has ln(µ/Q) and ln(µ/R) terms, and forR∼ ΛQCD no choice ofµ avoids large
logs. ForR = R1 ∼ µ ∼ Q we can minimize the logs inC0(Q,R,µ), but not inθ1(R,µ ,ΛQCD).
When the OPE is carried out inMS this problem is dealt with using aµ-RGE to sum large logs
betweenQ andΛQCD. For MSR we must useR-evolution, an RGE in theR variable [5], to sum
logs betweenR1 andR0. The appropriate R-RGE is formulated withµ = κR andκ ∼ 1 to ensure
that there are no logs in the anomalous dimension. Theκ dependence is reduced order by order in
perturbation theory. We will takeκ = 1 noting that the uncertainty from varyingκ is anyway well
captured by our method for the theory error analysis. So, forC0 andκ = 1,

R
d

dR
lnC0(Q,R,R) = γ̄ [αs(R)]−

( R
Q

)p
γ [αs(R)], (6)

whereγ̄ [αs] = ∑∞
n=0 γ̄n[αs(R)/4π]n+1 andγ [αs] = ∑∞

n=0γn[αs(R)/4π]n+1 are theMS andR anoma-
lous dimensions respectively. Eq. (6) can be combined with the usualµ-RGE

µ
d

dµ
lnC0(Q,R,µ) = γ̄ [αs(µ)] (7)
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Figure 1: Perturbative results for the Ellis-Jaffe sum rule in the MSR, RS, andMS schemes, at leading
order in 1/Q2. For all curves the one parameter, ˆa0, is fixed by data atQ≃ 5GeV.
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Figure 2: Uncertainty estimates in the MSR scheme andMS scheme for the Ellis-Jaffe sum rule at leading
order in 1/Q2.

to resum ultraviolet (UV) logs. The fact that on the left handside of eq. (6,7) only lnC0 is present
ensures that one can move freely in theµ-R plane and that the final result depends only on the
initial and final points on this plane. ForR1 > R0 the solution of Eq. (6) is

C0(Q,R0,R0) = C0(Q,R1,R1)UR(Q,R1,R0)Uµ(R1,R0) , (8)

whereUµ is the usualMS evolution factor andUR is theR-evolution obtained by integrating the
second term in eqn (6).

1. The Ellis-jaffe sum rule in MSR

In previous papers we have applied the principles of R-evolution to heavy quark masses and
other observables [5, 10]. Here we review the application tothe Ellis-Jaffe sum rule.

In MS the Ellis-Jaffe sum rule [6] for the proton in DIS with momentum transferQ is M1(Q) =
[

C̄B(Q,µ)θB + C̄0(Q,µ)â0/9
]

+ θ̄1(µ)/Q2. C̄B,0 are known at 3 loops [7]. The two leading or-
der terms are written so that both coefficients and matrix elements are separatelyµ-independent:
θB = gA/12+ a8/36 is given by the axial couplingsgA = 1.2694 anda8 = 0.572 for the nucleon
and hyperon, while ˆa0 is a Q independentMS matrix element.θ̄1 denotes all 1/Q2 power cor-
rections with their Wilson coefficients at tree level. TheMS coefficients are affected by ap = 2
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renormalon [8], which is removed in the MSR scheme. Eq. (5) gives [i = B,0]

Ci(Q,R,R) ≡ C̄i(Q,R)[C̄i(R,R)]−R2/Q2
. (1.1)

With R-evolution the MSR OPE prediction is

M1(Q) =
[

CB(Q,R1,R1)U
B
R(Q,R1,R0)θB (1.2)

+C0(Q,R1,R1)U
0
R(Q,R1,R0)â0/9

]

+ θ1(R0,R0)/Q2.

Figures 1,2 show perturbative predictions for the Ellis-Jaffe sum rule at leading power in 1/Q2,
compared with proton data from Ref. [9]. We useαs(4GeV) = 0.2282, and the 4-loopβ with
4 flavors. In Fig. 1, we show order-by-order results for theMS scheme atµ = Q, and for the
resummed MSR scheme withR1 = Q andR0 = 0.9 GeV. We fixâ0 = 0.141 so thatMS and MSR
both agree with the data forQ≃ 5GeV.MS agrees well with the data for largeQ, but turns away at
Q . 2 GeV and no longer converges. In contrast the MSR results still converge quickly and exhibit
excellent agreement with the data over a wide range ofQ’s. The NLL MSR result already has the
right curvature and, at NNLL and N3LL the agreement forQ≥ 0.6GeV improves. We also display
predictions in the RS scheme with subtraction scaleν f = 1.0GeV from Fig.3d of Ref. [12], which
improve slightly over theMS results, but may not be capturing the dominant power law dependence
on the factorization scale. In Fig. 2 we show uncertainties for three loop results in theMS and MSR
schemes. The dashed red curve is theMS prediction, and the blue band estimates the higher-order
perturbative uncertainties varyingµ in the rangeµmin(Q) < µ < 2Q. ForQ> 1.5GeV,µmin = Q/2,
while for Q< 1.5 GeV,µmin = 1.3Q/(1.1+Q/(1GeV)). The red solid line is the MSR prediction,
the red band is the perturbative uncertainty from varyingR1 in the same range as was done forµ
in MS, and the green band estimates the 1/Q2 power correction by varyingR0 = 0.7 to 1.2 GeV.
Fig. 2 implies−0.01GeV2 . θ1(R0,R0) . 0.01GeV2 in MSR, which is a much smaller power
correction than the∼ 0.1 GeV2 estimate obtained from naive dimensional analysis inMS.
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MEC, FPA2008-00592 and Ramon y Cajal Program, the Office of Nuclear Physics of the U.S.
Department of Energy, DE-FG02-94ER40818, the Alexander von Humboldt foundation, and the
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