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1. Introduction: hard lepton-hadron processes in perturbaive QCD

We are interested in the structure functions in deep-itielasattering (DIS), the corresponding
fragmentation functions in semi-inclusieee annihilation (SIA), and the cross sectiéyda/dM”2
for Drell-Yan (DY) lepton-pair production in hadron-hadroollisions (see Ref. [1] for a detailed
introduction). These one-scale observables, here debgteg(x, Q?), are generically given by

Fax @) = [Caijy(as(p?), 0¥/ Q¥ @ (2 { @ (1d)}(x) + 0(1/QP) . (1.1)

HereQ? denotes the physical hard scale (e@f = M for the DY case), and the corresponding
scaling variable.u represents th#1S renormalization and factorization scale (there is nartee
keep them different here), amgd stands for the Mellin convolution. The parts of Eq. (1.1) imlg
brackets only apply to the DY case, and summation o¥and j} is understood.

At u? = Q? the expansion of the coefficient functioBsin powers of the strong coupling is
Cai(X%,0s) = (1— ) 8qd(1—x) + asc;li)(x) + aszc;?(x) + afcg(x) +... (12

with a; = a5 /(4m). As indicated by the first term of the r.h.s., of all cases wesater here only the
longitudinal coefficient functions in DIS and SIA vanish atler al. The (spacelike) parton and
(timelike) fragmentation distributionfgh are, of course, non-perturbative quantities. However thei
scale dependence is calculable perturbatively via thermeglzation-group evolution equations

ding 100K = [RT(@s(W) @ )]0+ Pixas) = 310 PU00.  (13)
Except forF_ in DIS and SIA, the terms up tcy” (x) andP(™ (x) in Egs. (1.2) and (1.3) define the
N"LO approximations to Eqgs. (1.1). Precise predictions idiclg a sound numerical uncertainty
estimate require, at least, calculations at the next-it-tweleading order (NNLO= N2LO). The
same order is usually required for deducing structuraufestsuch as the ones discussed below.

The NNLO coefficient functions for the quantities mentioradubve Eq. (1.1), with the ex-
ception ofcf3) (x) in SIA, have been obtained in Refs. [2—7] (the latter two neticles deal with
the only theoretically relevant Higgs-exchange structuretion F, in the heavy-top limit). The
NNLO spacelike $) splitting functions in Eq. (1.3) are fully known from Ref{8], while for the
timelike (T) case only the diagonal quantiti@éﬁ?gg(x) have been derived so far [9]. ABNO only
the coefficient functions for the structure functidhs 3 o are available at this point [6, 10].

2. In(1—x) contributions to the splitting functions and coefficient functions

From ordera? the quark coefficient functions in Eq. (1.2) and quark-quspktting functions in

Eqg. (1.3) need to be decomposed into (laxggeminant) non-singlet and (suppressed) pure-singlet
contributions. The non-singlet splitting functions reeean only single-logarithmic (SL) higher-
order enhancement, and that only in terms relatively sigseieby(1—x) k=2 [8,9,11,12]

P (¥) = A1 (1=X)71 + By d(1=X) + Cip1 In(1—x) + 0((1—)*=tn'(1-x) . (2.1)

Also theCg = 0 part of the gluon-gluon splitting functions is of this fof]. The corresponding
(pure-)singlet splitting functions include double-lodfamic (DL) contributions
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! o _
PF)(S>99\CF /Pidgq : terms up to (1—x) In?~1(1-x) / In? (1-x) . (2.2)

The non-singlet coefficient functions for the structuredtionsF » 3, the (transverse, angle-
integrated and asymmetric) fragmentation functibnsa and the quark-antiquark annihilation DY
cross sectiolfrpy, on the other hand, show a DL enhancement already (but nﬁtaﬂﬁe(l—x);l
plus-distribution level, i.e,

cihs : terms up to(1—x) "2 1(1—x) . (2.3)

The highesi(l—x)‘1 logarithms are resummed by the threshold exponentiatidf ylith the ex-
ponents now known to next-to-next-to-next-to-leadingaldiymic (NLL) accuracy (up to the nu-
merically irrelevant four-loop cusp anomalous dimeng\giin Eq. (2.1)), see Refs. [14-16]. The
leading contributions for the corresponding longitudibds and SIA coefficient functions are
down by a factof1—x) and one power of Ifil—x) w.r.t. Eq. (2.3). Despite a recently renewed in-
terest in such terms which behaveNist InKN in Mellin space, see, e.g., Refs. [17], corresponding
resummations have not been derived so far for these cotriisuto the coefficient functions.

In the flavour-singlet sector we will confine ourselves to BIS cases of, andFy [6, 7]
in the present contribution. The gluon coefficient functfonFy, is of the form (2.3), while the
‘off-diagonal’ (see section 5) quantities are also doubtgrithmic but suppressed ¥—x),

h o _
cé’é/(p.q . termsupto IA~1(1—x) . (2.4)

3. Non-singlet physical kernels and coefficient-function gedictions

We now switch to moment space (and often suppress the MellialmeN), which considerably
simplifies the following calculations by turning the corwiabns in Egs. (1.1) and (1.3) into simple
products. The resulting manipulations of harmonic sumg$ §@l harmonic polylogarithms [19]
have been mostly carried out ioRm3 and TFORM [20].

The non-singlet physical evolution kernédg for the DIS and SIA cases are constructed by

dF _ d _ dC, _ dC, 1
dinQ2 ~ dinQ? (Ca0) = WQ‘FCan = (B(aS)H +CaP)C; 'Fa
dInC

for u? = Q? (the additional terms fou? # Q? can be readily reconstructed), wheBéa,) is the
usual beta function of QCIB(as) = —aZfo—aPi — ... with By = 11/3C — 1/3n; etc, and
is the number of effectively massless flavours. &et L Eq. (1.2) leads to the expansion

Ka = aPao + 3 1—1 & (Pal — Zi BeCaix) (3.2)
with
6a71 — Ca71 B 6&3 — 3Ca73_3Ca72Ca71+C§:1
éa.Z == ZCa’z - Caz’l 5 éa’4 == 4Ca.4 - 4Ca.3 Ca’]_ - 2C§2 —|— 4Ca’2 Cil - C;‘:l PRI (33)

The structure for the DY case is the same excepPfar= Pé'ﬁ)s — 2Panin Eq. (3.2).
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The threshold resummation of these coefficient functioB$, [dgain fora # L, is given by
Ca(N,as) = go(as) exp{Lg, (asL) +gz(ask) +...} + O(1/N) (3.4)

with L = InN. Due to the logarithmic derivative in the second line of E3j1f, the exponentiation
(3.4) guarantees a single-logarithmic lafg¢targex enhancement of the physical kernels [21],

Ka(N,0s) = — ¥ s AalL + B(as) % {Loy(@al)+g@l)+..} +....  (35)

We are now ready to present the first crucial observationcalbkidered non-singlet kernels
Ka (includinga = L in DIS and SIA) are single-log enhanced to all orderblirt or (1—x) [12,22)].
Switching back to«-space, the universal# L leading-logarithmic terms in DIS (upper sign) and
SIA (lower sign) to NLO read, with peq(X) = (1—x)jr1—1—x,

Kao(X) = 2Cr pgq(X) +3Cr(1—X)

Ka1(X) = In(1—X) pgg(X) [—2Cr o F 8CZ InX]

Ka2(X) = In?(1—X) pgq(X) [ 2C¢ B¢ £ 12CZ Bo Inx+ 16CE In®x] (3.6)
Kag() = In3(1=X) peg(x) [—chﬁg T 44/3C2 B¢ Inx— 32C2 o In>x+ &, CA In3x| |

whereép3 is the unknown four-loop SL coefficient in Eq. (2.1). For D2 \N®LO relation is based
on Refs. [10], while for SIA we have used incomplete but sidfit analytic-continuation results
presented in Ref. [12] where also the DY relations analogogs. (3.6), known only to NNLO,
can be found. The first terms on the right-hand-sides incloddeading largey, terms for which
Egs. (3.6) can be generalized to all orders in DIS, usingthg results of Ref. [23].

It is now rather obvious to conjecture that the physical etoh kernels receive only SL
contributions to all orders in at all powers of;. This implies an exponentiation (see section 4)

of the coefficient functions beyond tl(m—x);l terms. The emergence of the resulting fourth-order
predictions can be illustrated by recalling the last relativritten out in Eq. (3.3),

~ 2 2 4

Ca74 = 4Ca74 — 4Ca73 Ca71 — 2Ca.2 + 4Ca72 Ca,l — Ca’l . (37)
~~ S~~~

SL DL, new DL, known for DIS/SIA

l.e., the I"*®5(1—x) DL fourth-order contributions foF; 23 andFr a in Eq. (1.2) need to cancel
the corresponding terms from the known lower-order coefficfunctions at all orders ifl—x),
and consequently can be predicted from those results. Wetdbave the space here to give an
explicit example of these predictions and their numeriézd,sbut refer the reader to Ref. [12].
Note, however, that our results explain an old observa@ai for the highest AN logarithms.

Due to the universality of the leading terms in Egs. (3.8pdbrc'~> in DIS and SIA the
coefficients of the three highest logarithms are predidigdhe respective differencés — K, and
K, — Kt. The agreement of these predictions with those obtained fhe quite different kernels
KL [22] - the above differences are of the ordbpx)o, while the leading large-terms ofK are of
the form(l—x);1 — provides a quite non-trivial check of the above conject@e the other hand,
only two logarithms can be predicted completely at this patrthe third and all higher orders for
the DY case [12], as the corresponding coefficient functoonily known to orden? [5].
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4. All-order exponentiation of the 1/N non-singlet coefficient functions

The subleading AN contributions to the non-singlet coefficient functions f@p 3, Fr | o andFpy
can be cast in an all-order form analogous to (if unavoidé&sg compact than) Eq. (3.4),

CaCalyo = ~ ([A5L+ 3o+ [0ZL+dB] a2+ ..) exp{Lha(al) +ho(al) + ..}

(4.1)
The exponentiation functions are defined by the sehigasL) = 5, _; hn(ask)” with L = InN.
Their coefficients for DISIA (given by the uppeflower sign in Egs. (4.2) and (4.3)) relative to
the corresponding coefficients for thNELK soft-gluon exponentiation are given by

5 17

hy = G, hy = Gpo + ﬂﬁg + §BOCF — 18C#£ (4.2)
1 1 &, 53 34

hpy = 1+ 5Po%6Ck . hpg = Gpg + gpgi <%_E> BZCr — gﬁoC,?i 72C3 .

Note that only the’;FBg andCF2[3c',*1 terms ofKy | in Egs. (3.6) are relevant at this order ifNL
¢k, is the corresponding subleading langeeoefficient at the fourth order, the calculation of which
should become possible in the not too distant future. Alsditist term ofh; in Eq. (4.1) is known
for DIS and SIA but non-universal, as the effectdpfset in at this point. See again Ref. [12] for
these results as well as the prefactor coefficients in Ef)) &hd all corresponding DY results.

The corresponding exponentiation for the longitudinalicre function and fragmentation
function is given by [22] (see also Ref. [24])
ClY(N) = N7Y(dYa +d5)a2 +...) exp{Lhis(asl) + ha(al) +...} + 6(N?), (4.3)

where the following coefficients can be determined from Hiltorder result of Refs. [3,12]:

2 1
hoin = 2C, h pp = §[30CF o hes = §[302CF
hio1 = Bo+4y%Cr —Cr + (4—402)(Ca—2CF)

sz = 5 (Bohys + Ao) — B(Ca— 2Ce (130 + &5+ 43) (4.9

Both these exponentiations have far less predictive pdveer theifN°LK counterparts [13—16]
where, e.g., unlike in Egs. (4.2) and (4.4), no other newfimefht entersy,, besides the two-loop
cusp anomalous dimensida. A full NLL accuracy, i.e., a complete determination of thumétion
h,(asL) may be feasible for Eq. (4.1). On the other hand, the corredipg leading coefficients
for h; [12] and the results fon,_, in Eq. (4.4) indicate a major, possibly insurmountable atist
on the way to full NNLL and NLL accuracy for the quantitiEg (a # L) andF_, respectively.

5. The singlet evolution off, and F, and splitting-function predictions

DIS via the exchange of a scalardirectly coupling only to gluons (like the Higgs boson in the
heavy-top limit [26]), is an ideal complement to the staddstructure functiori. The evolution
kernels for the resulting system of observables are as ifirdtdine of Eq. (3.1), but with

(7)o (e < () o
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and the splitting-functions matri®;. This system has first been discussed at NLO in Ref. [1] (it
may also be interesting to study other systems suck.a&;() [27] and corresponding SIA cases).
Instead of the second line of Eq. (3.1), we now have (\{@tiP] denoting the matrix commutator)

d dl
dInFQ2 _ (B(as)d%::ﬂc PIC1+P)F = KF . (5.2)
—_————

DL (ns+ps) DL (singlet only)

As far as they are completely known now, i.e., at NLO and NNA&fS¢ the matrix entries of
K show an only single-logarithmic enhancement at all powérd e x), K;? ~ In"(1-x) +
Moreover, the leading-log contributions K)L(\?/W are the same as in the non-singlet quark-case
and the very closely relatgt: = 0 gluon case [6]. Conjecturing that this behaviour holds als
N3LO, the highest three logarithms of the unknown four-loolittipg functions,

3
IN%%4(1-x) of RSy, and IP43(1-x) of pgggglcp (5.3)

can be predicted from the known [6, 10] three-loop coefficfanctions forF, andF, at all orders
n (1-x). For example, the Ieadir(g—x)0 part of the NLO gluon-quark splitting function reads

3 22
P (x) = IN(1-X) - 0 + In5(1— )[27CAan 27C,AFanf 27CAan}

293 80 4477 13
+In4(1-x) [(7 -3 &) Gy + ( e — 83,) GCeny — 81(:,AF(:F2nf
116, o 17

— —Cnf + = CCr nf

=TGR+ o 4 cAan} +o(n(1-x)  (5.4)

81

with C;= = Ca — Cr. The vanishing of the leading $i1—x) term is due to an accidental cancella-
tion of positive and negative contributions to its coeffitieOn the other hand, the colour factors of
the DL terms in Eq. (5.4) follow the same pattern as the cpmeding lower-order contributions:
all DL terms vanish foCy = Cr (part of the supersymmetric limit), with the leading ternﬁ?ég
being of the formn; Cie, the next-to-leading logarithmg {Cr,n; } C= ! etc. Rather non-trivially,
this pattern is predicted to hold for all four-loop singlptiing functions at all orders i(i1—x) [6].

Unlike in the non-singlet case, there is no direct all-orgeneralization here, as the cancel-
lation of the DL contributions in Eq. (5.2) involves the agsponding terms (2.2) and (2.4) of the
N"LO splitting functions and coefficient functions which arettb unknown ain > 4. One may
try a simultaneous extraction of at least the leading ldigans of both quantities, but it turns out
that the only single-logarithmic enhancement of the platdiernel does not quite provide enough
constraints, even if the colour structure of the previousgeaph is assumed in addition.
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