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We have studied the physical evolution kernels for nine non-singlet observables in deep-inelastic

scattering (DIS), semi-inclusivee+e− annihilation and the Drell-Yan (DY) process, and for the

flavour-singlet case of the photon- and heavy-top Higgs-exchange structure functions (F2, Fφ ) in

DIS. All known contributions to these kernels show an only single-logarithmic large-x enhance-

ment at all powers of(1−x). Conjecturing that this behaviour persists to (all) higherorders,

we have predicted the highest three (DY: two) double logarithms of the higher-order non-singlet

coefficient functions and of the four-loop singlet splitting functions. The coefficient-function pre-

dictions can be written as exponentiations of 1/N-suppressed contributions in Mellin-N space

which, however, are less predictive than the well-known exponentiation of the lnk N terms.
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Higher-order predictions from physical evolution kernels A. Vogt

1. Introduction: hard lepton-hadron processes in perturbative QCD

We are interested in the structure functions in deep-inelastic scattering (DIS), the corresponding
fragmentation functions in semi-inclusivee+e− annihilation (SIA), and the cross section1σ0

dσ/dM 2
ll

for Drell-Yan (DY) lepton-pair production in hadron-hadron collisions (see Ref. [1] for a detailed
introduction). These one-scale observables, here denotedby Fa(x,Q2), are generically given by

Fa(x,Q
2) =

[
Ca,i{ j}(αs(µ2),µ2/Q2)⊗ f h

i (µ2){⊗ f h′
j (µ2)}

]
(x)+O(1/Q(2)) . (1.1)

HereQ2 denotes the physical hard scale (e.g.,Q2 = M 2
ll for the DY case), andx the corresponding

scaling variable.µ represents theMS renormalization and factorization scale (there is no need to
keep them different here), and⊗ stands for the Mellin convolution. The parts of Eq. (1.1) in curly
brackets only apply to the DY case, and summation overi {and j} is understood.

At µ2 = Q2 the expansion of the coefficient functionsCa in powers of the strong couplingαs is

Ca,i(x,αs) = (1−δaL)δiq δ (1−x) + asc
(1)
a,i (x) + a2

s
c(2)

a,i (x) + a3
s

c(3)
a,i (x) + . . . (1.2)

with as ≡ αs/(4π). As indicated by the first term of the r.h.s., of all cases we consider here only the
longitudinal coefficient functions in DIS and SIA vanish at order α 0

s
. The (spacelike) parton and

(timelike) fragmentation distributionsf h
i are, of course, non-perturbative quantities. However their

scale dependence is calculable perturbatively via the renormalization-group evolution equations

d
d ln µ2 fi(x,µ2) = [PS,T

ik (αs(µ2))⊗ fk(µ2) ](x) , P(x,αs) = ∑ l=0 a l+1
s

P(l)(x) . (1.3)

Except forFL in DIS and SIA, the terms up toc(n)
a (x) andP(n)(x) in Eqs. (1.2) and (1.3) define the

NnLO approximations to Eqs. (1.1). Precise predictions including a sound numerical uncertainty
estimate require, at least, calculations at the next-to-next-to-leading order (NNLO≡ N2LO). The
same order is usually required for deducing structural features such as the ones discussed below.

The NNLO coefficient functions for the quantities mentionedabove Eq. (1.1), with the ex-
ception ofc(3)

L (x) in SIA, have been obtained in Refs. [2–7] (the latter two new articles deal with
the only theoretically relevant Higgs-exchange structurefunction Fφ in the heavy-top limit). The
NNLO spacelike (S) splitting functions in Eq. (1.3) are fully known from Refs.[8], while for the
timelike (T ) case only the diagonal quantitiesP(2)T

qq,gg(x) have been derived so far [9]. At N3LO only
the coefficient functions for the structure functionsF1,2,3,φ are available at this point [6,10].

2. ln(1−x) contributions to the splitting functions and coefficient functions

From orderα 2
s

the quark coefficient functions in Eq. (1.2) and quark-quarksplitting functions in
Eq. (1.3) need to be decomposed into (large-x dominant) non-singlet and (suppressed) pure-singlet
contributions. The non-singlet splitting functions receive an only single-logarithmic (SL) higher-
order enhancement, and that only in terms relatively suppressed by(1−x)k≥2 [8,9,11,12]

P(l)
ns (x) = Al+1(1−x)−1

+ + Bl+1 δ (1−x) + Cl+1 ln(1−x) + O
(
(1−x)k≥1 lnl(1−x)

)
. (2.1)

Also theCF = 0 part of the gluon-gluon splitting functions is of this form[6]. The corresponding
(pure-)singlet splitting functions include double-logarithmic (DL) contributions
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P(l)
ps,gg|CF

/P(l)
qg,gq : terms up to (1−x) ln2l−1(1−x) / ln2l(1−x) . (2.2)

The non-singlet coefficient functions for the structure functionsF1,2,3, the (transverse, angle-
integrated and asymmetric) fragmentation functionsFT,I,A and the quark-antiquark annihilation DY
cross sectionFDY, on the other hand, show a DL enhancement already (but not only) at the(1−x)−1

+

plus-distribution level, i.e,

c(l)
a,ns : terms up to(1−x)−1 ln2l−1(1−x) . (2.3)

The highest(1−x)−1 logarithms are resummed by the threshold exponentiation [13], with the ex-
ponents now known to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy (up to the nu-
merically irrelevant four-loop cusp anomalous dimensionA4 in Eq. (2.1)), see Refs. [14–16]. The
leading contributions for the corresponding longitudinalDIS and SIA coefficient functions are
down by a factor(1−x) and one power of ln(1−x) w.r.t. Eq. (2.3). Despite a recently renewed in-
terest in such terms which behave asN−1 lnk N in Mellin space, see, e.g., Refs. [17], corresponding
resummations have not been derived so far for these contributions to the coefficient functions.

In the flavour-singlet sector we will confine ourselves to theDIS cases ofF2 and Fφ [6, 7]
in the present contribution. The gluon coefficient functionfor Fφ is of the form (2.3), while the
‘off-diagonal’ (see section 5) quantities are also double-logarithmic but suppressed by(1−x),

c(l)
2,g/φ,q : terms up to ln2l−1(1−x) . (2.4)

3. Non-singlet physical kernels and coefficient-function predictions

We now switch to moment space (and often suppress the Mellin variableN), which considerably
simplifies the following calculations by turning the convolutions in Eqs. (1.1) and (1.3) into simple
products. The resulting manipulations of harmonic sums [18] and harmonic polylogarithms [19]
have been mostly carried out in FORM3 and TFORM [20].

The non-singlet physical evolution kernelsKa for the DIS and SIA cases are constructed by

dFa

d lnQ2 =
d

d lnQ2 (Ca q) =
dCa

d lnQ2 q + CaPq =
(
β (as)

dCa

das

+ CaP
)

C−1
a Fa

=
(

Pa + β (as)
d lnCa

das

)

Fa = KaFa ≡ ∑ l=0 a l+1
s

Ka,l Fa (3.1)

for µ2 = Q2 (the additional terms forµ2 6= Q2 can be readily reconstructed), whereβ (as) is the
usual beta function of QCD,β (as) = −a2

s
β0− a3

s
β1− . . . with β0 = 11/3CA −1/3nf etc, andnf

is the number of effectively massless flavours. Fora 6= L Eq. (1.2) leads to the expansion

Ka = asPa,0 + ∑ l=1 a l+1
s

(
Pa,l −∑ l−1

k=0 βk c̃a, l−k
)

(3.2)

with

c̃a,1 = ca,1 , c̃a,3 = 3ca,3−3ca,2 ca,1 + c3
a,1

c̃a,2 = 2ca,2− c2
a,1 , c̃a,4 = 4ca,4−4ca,3 ca,1−2c2

a,2 +4ca,2 c2
a,1− c4

a,1 , . . . . (3.3)

The structure for the DY case is the same except forPa,n ≡ P(n)
a,ns → 2Pa,n in Eq. (3.2).
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The threshold resummation of these coefficient functions [13], again fora 6= L, is given by

Ca(N,αs) = g0(as) exp{Lg1(asL)+ g2(asL)+ . . .} + O(1/N) (3.4)

with L ≡ lnN. Due to the logarithmic derivative in the second line of Eq. (3.1), the exponentiation
(3.4) guarantees a single-logarithmic large-N/ large-x enhancement of the physical kernels [21],

Ka(N,αs) = −∑ l=1 Al a l
s
L + β (as)

d
das

{Lg1(asL)+ g2(asL)+ . . .} + . . . . (3.5)

We are now ready to present the first crucial observation: allconsidered non-singlet kernels
Ka (includinga = L in DIS and SIA) are single-log enhanced to all orders inN−1 or (1−x) [12,22].
Switching back tox-space, the universala 6= L leading-logarithmic terms in DIS (upper sign) and
SIA (lower sign) to N3LO read, withpqq(x) = (1−x)−1

+ −1−x ,

Ka,0(x) = 2CF pqq(x)+3CF δ (1−x)

Ka,1(x) = ln(1−x) pqq(x)
[
−2CFβ0 ∓ 8C 2

F lnx
]

Ka,2(x) = ln2(1−x) pqq(x)
[

2CFβ 2
0 ± 12C 2

F β0 lnx+16C 3
F ln2x

]
(3.6)

Ka,3(x) = ln3(1−x) pqq(x)
[

−2CF β 3
0 ∓ 44/3C 2

F β 2
0 lnx−32C 3

F β0 ln2x+ ξP3
C 4

F ln3x
]

,

whereξP3
is the unknown four-loop SL coefficient in Eq. (2.1). For DIS the N3LO relation is based

on Refs. [10], while for SIA we have used incomplete but sufficient analytic-continuation results
presented in Ref. [12] where also the DY relations analogousto Eqs. (3.6), known only to NNLO,
can be found. The first terms on the right-hand-sides includethe leading large-nf terms for which
Eqs. (3.6) can be generalized to all orders in DIS, using theC2,ns results of Ref. [23].

It is now rather obvious to conjecture that the physical evolution kernels receive only SL
contributions to all orders inαs at all powers ofnf . This implies an exponentiation (see section 4)

of the coefficient functions beyond the(1−x)−1
+ terms. The emergence of the resulting fourth-order

predictions can be illustrated by recalling the last relation written out in Eq. (3.3),

c̃a,4
︸︷︷︸

SL

= 4ca,4
︸︷︷︸

DL,new

−4ca,3 ca,1− 2c2
a,2 + 4ca,2 c2

a,1− c4
a,1

︸ ︷︷ ︸

DL,known for DIS/SIA

. (3.7)

I.e., the ln7,6,5(1−x) DL fourth-order contributions forF1,2,3 andFT,I,A in Eq. (1.2) need to cancel
the corresponding terms from the known lower-order coefficient functions at all orders in(1−x),
and consequently can be predicted from those results. We do not have the space here to give an
explicit example of these predictions and their numerical size, but refer the reader to Ref. [12].
Note, however, that our results explain an old observation [25] for the highest 1/N logarithms.

Due to the universality of the leading terms in Eqs. (3.6), also for c(l>3)
L,ns in DIS and SIA the

coefficients of the three highest logarithms are predicted,by the respective differencesK2−K1 and
KI −KT . The agreement of these predictions with those obtained from the quite different kernels
KL [22] – the above differences are of the order(1−x)0, while the leading large-x terms ofKL are of
the form(1−x)−1

+ – provides a quite non-trivial check of the above conjecture. On the other hand,
only two logarithms can be predicted completely at this point at the third and all higher orders for
the DY case [12], as the corresponding coefficient function is only known to orderα 2

s
[5].
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4. All-order exponentiation of the 1/N non-singlet coefficient functions

The subleading 1/N contributions to the non-singlet coefficient functions forF1,2,3, FT,I,A andFDY
can be cast in an all-order form analogous to (if unavoidablyless compact than) Eq. (3.4),

Ca −Ca

∣
∣
N0Lk =

1
N

([
d (1)

a,1 L + d (1)
a,0

]
as +

[
d (2)

a,1 L + d (2)
a,0

]
a2
s
+ . . .

)
exp{Lh1(asL)+ h2(asL)+ . . .} .

(4.1)

The exponentiation functions are defined by the serieshk(asL) = ∑k=1 hkn(asL)n with L ≡ lnN.
Their coefficients for DIS/SIA (given by the upper/lower sign in Eqs. (4.2) and (4.3)) relative to
the corresponding coefficients for theN0Lk soft-gluon exponentiation are given by

h1k = g1k , h22 = g22 +
5
24

β 2
0 ±

17
9

β0CF − 18C 2
F (4.2)

h21 = g21 +
1
2

β0 ± 6CF , h23 = g23 +
1
8

β 3
0 ±

( ξK4

8
−

53
18

)

β 2
0 CF −

34
3

β0C 2
F ± 72C 3

F .

Note that only theCFβ l
0 andC 2

F β l−1
0 terms ofKa, l in Eqs. (3.6) are relevant at this order in 1/N.

ξK4
is the corresponding subleading large-nf coefficient at the fourth order, the calculation of which

should become possible in the not too distant future. Also the first term ofh3 in Eq. (4.1) is known
for DIS and SIA but non-universal, as the effects ofFL set in at this point. See again Ref. [12] for
these results as well as the prefactor coefficients in Eq. (4.1) and all corresponding DY results.

The corresponding exponentiation for the longitudinal structure function and fragmentation
function is given by [22] (see also Ref. [24])

C(±)
L (N) = N−1(d (±)

L,1 as + d (±)
L,2 a2

s
+ . . .) exp{LhL,1(asL)+ hL,2(asL)+ . . .} + O(N−2) , (4.3)

where the following coefficients can be determined from the third-order result of Refs. [3,12]:

hL,11 = 2CF , hL,12 =
2
3

β0CF , hL,13 =
1
3

β 2
0 CF

hL,21 = β0 + 4γeCF − CF + (4−4ζ2)(CA −2CF)

hL,22 =
1
2

(β0 h21+ A2) − 8(CA −2CF)2(1−3ζ2 + ζ3 + ζ 2
2 ) . (4.4)

Both these exponentiations have far less predictive power than theirN0Lk counterparts [13–16]
where, e.g., unlike in Eqs. (4.2) and (4.4), no other new coefficient entersg22 besides the two-loop
cusp anomalous dimensionA2. A full NLL accuracy, i.e., a complete determination of the function
h2(asL) may be feasible for Eq. (4.1). On the other hand, the corresponding leading coefficients
for h3 [12] and the results forhL,2 in Eq. (4.4) indicate a major, possibly insurmountable obstacle
on the way to full NNLL and NLL accuracy for the quantitiesFa (a 6= L) andFL, respectively.

5. The singlet evolution ofF2 and Fφ and splitting-function predictions

DIS via the exchange of a scalarφ directly coupling only to gluons (like the Higgs boson in the
heavy-top limit [26]), is an ideal complement to the standard structure functionF2. The evolution
kernels for the resulting system of observables are as in thefirst line of Eq. (3.1), but with

F =
(

F2
Fφ

)

, C =
( C2,q C2,g

Cφ,q Cφ,g

)

, K =
( K22 K2φ

Kφ2 Kφφ

)

(5.1)

5



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
5
3

Higher-order predictions from physical evolution kernels A. Vogt

and the splitting-functions matrixPi j. This system has first been discussed at NLO in Ref. [1] (it
may also be interesting to study other systems such as (F2, FL) [27] and corresponding SIA cases).
Instead of the second line of Eq. (3.1), we now have (with[C,P] denoting the matrix commutator)

dF
d lnQ2 =

(
β (as)

d lnC
das

︸ ︷︷ ︸

+ [C,P]C−1+ P
︸ ︷︷ ︸

)
F = K F . (5.2)

DL (ns + ps) DL (singlet only)

As far as they are completely known now, i.e., at NLO and NNLO,also the matrix entries of
K show an only single-logarithmic enhancement at all powers of (1−x), K(n)

ab ∼ lnn(1−x)+ . . . .

Moreover, the leading-log contributions toK(n)
22/φφ are the same as in the non-singlet quark-case

and the very closely relatedCF = 0 gluon case [6]. Conjecturing that this behaviour holds also at
N3LO, the highest three logarithms of the unknown four-loop splitting functions,

ln6,5,4(1−x) of P(3)
qg,gq and ln5,4,3(1−x) of P(3)

ps,gg|CF
(5.3)

can be predicted from the known [6,10] three-loop coefficient functions forF2 andFφ at all orders
in (1−x). For example, the leading(1−x)0 part of the N3LO gluon-quark splitting function reads

P(3)
qg (x) = ln6(1−x) · 0 + ln5(1−x)

[ 22
27

C 3
AFnf −

14
27

C 2
AFCFnf −

4
27

C 2
AFn2

f

]

+ ln4(1−x)
[( 293

27
−

80
9

ζ2

)

C 3
AFnf +

( 4477
162

− 8ζ2

)

C 2
AFCFnf −

13
81

CAFC 2
Fnf

−
116
81

C 2
AFn2

f +
17
81

CAFCFn2
f −

4
81

CAFn3
f

]

+ O
(
ln3(1−x)

)
(5.4)

with CAF ≡CA −CF . The vanishing of the leading ln6(1−x) term is due to an accidental cancella-
tion of positive and negative contributions to its coefficient. On the other hand, the colour factors of
the DL terms in Eq. (5.4) follow the same pattern as the corresponding lower-order contributions:
all DL terms vanish forCA = CF (part of the supersymmetric limit), with the leading terms of P(l)

qg

being of the formnf C l
AF , the next-to-leading logarithmsnf{CF ,nf }C l−1

AF etc. Rather non-trivially,
this pattern is predicted to hold for all four-loop singlet splitting functions at all orders in(1−x) [6].

Unlike in the non-singlet case, there is no direct all-ordergeneralization here, as the cancel-
lation of the DL contributions in Eq. (5.2) involves the corresponding terms (2.2) and (2.4) of the
NnLO splitting functions and coefficient functions which are both unknown atn ≥ 4. One may
try a simultaneous extraction of at least the leading logarithms of both quantities, but it turns out
that the only single-logarithmic enhancement of the physical kernel does not quite provide enough
constraints, even if the colour structure of the previous paragraph is assumed in addition.
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