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1. Introduction

Gluon fusion is the main production channel of the SM Higgsemn at hadron colliders, and
both virtual and real corrections have been thoroughlystigated since the beginning of the 90’s.

The QCD next-to-leading order (NLO) radiative correctidnsthe total Higgs-production
cross section have been first computed belowtthilreshold in Ref. [1], and using an effective-
Lagrangian approach, where the top quark is integratediowRef. [2]. Formally, the second
method defines the heavy-top limit, and it has representedttrting point for subsequent higher
order improvements. The result for the entire Higgs-masgeat NLO was derived in Ref. [3].
Since QCD NLO corrections increase the cross section by tharre 70 %, there was a flurry of
activity on higher order QCD effects. The next-to-nextdading order (NNLO) corrections to
the total cross section have been calculated just in theyktegvlimit: partial results have been
obtained in Ref. [4] and the complete NNLO cross section tenlderived in Ref. [5]. An all-
order resummed calculation of multiple soft-gluon emigsih next-to-next-to-leading logarith-
mic (NNLL) accuracy has been performed in Ref. [6] and inzigdhigher logarithmic orders in
Ref. [7]. Improvements with respect to the heavy-top limavé been recently obtained by the
authors of Ref. [8].

The electroweak NLO corrections to the total cross sectierevevaluated in Ref. [9] in the
heavy-top limit, and turned out to be less than 1%. The douion due to the light fermions has
been calculated analytically in Ref. [10], and found to beaemnsizable; the remaining component
of the amplitude involving the top quark has been computechbgins of a Taylor expansion in the
Higgs external momentum in Ref. [11] and is, for obvious oeas valid in the kinematical region
below thewW threshold. The complete electroweak corrections were atedpin Ref. [12] and
are the topics of this article. Under the hypothesis of fazation with respect to the dominant
QCD soft and collinear radiation, the impact of the EW cdiimets to Higgs-production in proton-
proton collisions has been estimated in Ref. [13]. The féation hypothesis can be verified
just by the direct computation of the EXNQCD corrections. The contribution to these corrections
coming from top-loops was evaluated in Ref. [14] in the hetyy limit, while the authors of
Ref. [15] used an effective theory, valid in the small Higgassirange, to compute the corrections
arising from light quarks, finding agreement with the faitation hypothesis.

2. Computation of the EW corrections

The main problem that one encounters in the computationeztrelweak processes at two-
loop level is connected to the presence of many differentsnsaales. The common approach,
which aims to write two-loop amplitudes in terms of analyftimctions, relies on expansions in
some of the scales of the problem restricting however thiditsabf the result to some regions of
the parametric space. In order to have a result valid evesyeytlwe have abandoned the analytic
way for a numerical evaluation of Feynman diagrams. In thmerical approach the (many) heavy
mass scales can be easily treated, but a special care hasdydted to light particles. Their
small masses are natural regulators for the collinear &nigias, but generate instabilities in the
numerical integration. Therefore we have developed sortentgues to extract explicitly the di-
vergent behavior in these small masses, which are of Itgaigttype. In the production process
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gg — H the total amplitude is free from collinear divergences aredcawuld verify analytically that
the logarithms in the small masses cancel when the coritritsibf all diagrams are summed up.

The strategy to obtain stable integral representatiormtsstéath Feynman parametrization.
After the extraction of possible collinear logarithms thtegrand always takes the form:

anl”'zakvu(zlv"wzk) Ian(ZL...’Zk)’ l’l:_]"_z’ (21)

wherezy, ...,z are the Feynman variables, integrated in some finite donaai@, (]¥) andng, ..., ng
are natural numbers. The functidhis quadratic with respect to a subdet} of {z,...,z} and
eachZ’ is proportional to one external squared momentum. This isre@l feature of two-loop
diagrams. The idea is to manipulate the integral and putthiérfollowing form:

'R . (U2

/dzm f <%> 2.2)
where the functiorf must satisfyf (0) = 0 (possible candidates are the Spence functidhd4nx),
Lin(X), Sh,p(x)) andQ, U andP are polynomials. In this way the possible zeros of the denator
U are compensated by the “regulating functidndnd the integral has no unstable points anymore.

In the case where the quadratic is not complete (i.e. sonegrattsquared momenta vanish)

the solution is simple. For the proce3g— H the two external squared momenta corresponding
to the two gluons are always zero and therefore the quadfatan be written a¥ = axy+ bx+
cy+d, wherex,y are two integration variables and the parametelsc,d depend on the other
variables and on the masses and momenta.u~er—1,—2 andm= 0 we can use the following
relations (similar relations hold fan > 0):

1
Ax+B

1 A
= oz In (1+—x) A—ay+b, B=cy+d

B
1 B 1 (ad—bc)x
(axy+bx+cy+d)2 B PTETYSL {l+ b (axy-+ bx+ cy+d) } (2:3)

The two right-hand sides are exactly in the desired formztres of the denominator correspond
to the zeros of the logarithms. After an integration by ptotget rid of the derivatives, the result
is ready to be integrated numerically.

3. Behavior around WW and ZZ thresholds

As explained in details in Refs. [16, 12] the two-loop amyli for the partonic procegg —
H presents a singular behavior figk, = 2M,, andM,; = 2M,. This singularity is of squared root
type and is represented by terms proportional to the inysrseer of the threshold factg;,

B =1/1-4M?/M2,  with M =M,,M,. 3.1)

The origin of this singularity is the derivative of the Higgee-loop self-energy, associated with
the Higgs wave function renormalization, as depicted in Eig

Mw, Mz
. . H H
(1-loop diagramsk (H wave-function FR) — ---- Q mmm X mme- <I::

Figure 1: Singularf~—! behavior at the normah threshold coming from WFR.
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A pragmatic gauge-invariant solution to the problem of shadd singularities due to unstable
particles has been introduced and formalized in Ref. [1d]iatermed in the following as minimal
complex-mass (MCM) scheme. In this scheme the NLO amplitsidecomposed according to

MO 5 BRI pe, (3.2)
=Wz Pi

where square-root-singular tern#ssg; ) have been isolated from the component which is finite for
Bi — 0 (Arem). After proving that all coefficients in Eq.(3.2) satisfypseately the Ward identities,
we minimally modify the amplitude introducing the compleass scheme of Ref. [18] for the
divergent terms: the real masses of Weand theZ bosons are replaced by the corresponding
complex poles in the threshold factg@@si =W, Z and in the coefficientfsr; and the real parts of
theW and theZ self-energies stemming from mass renormalization at ooy &ve traded for the
complete self-energies, including imaginary parts.

The MCM scheme allows for a straightforward removal of urgitgl infinities, but it does not
deal with the artificial cusps associated with the crossingpomal thresholds, as shown in Fig. 2,
which represent a concrete problem in assessing the impasbdoop electroweak corrections.
We have therefore undertaken the task of introducing theptetie complex-mass (CM) scheme
of Ref. [18], where the procedure described for the divergems of Eq.(3.2) has been extended
to the remaindeArgp. In Fig. 2 are shown the two-loop electroweak percentageections for
the partonic cross sectiaqg — H. The big contribution arising at largdy is basically due to the
scalar sector of the SM, which is approaching the strongrregirhis is a two-loop feature, being
the one loop notoriously protected by Veltman’s theorem.
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Figure2: Two-loop electroweak percentage corrections for the paéstoross sectiogg — H. The solid
line denotes the total electroweak corrections in the M@swh including also top quarks, while the dotted
line denotes the contribution coming from light fermionpsdan the MCM scheme.

4. Unstable particles and gauge invariance

As pointed out in Ref. [17], the doubly-contracted Ward titgrfor the amplitude of the decay
H — yy is not satisfied at two-loop level above AN threshold: the on-shell mass renormaliza-
tion of the Higgs boson introduces the real part of the ong-kelf-energy which does not cancel
with the corresponding term coming from the pure loop pamtaining the full self-energy. Gauge
invariance is then violated unless one restores it by hahd.cfigin of the problem is connected to
the common definition of production cross section and deddyhwwhich treats the Higgs boson
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as an asymptotic state. But the Higgs boson is an unstahiielpaand should be removed from
infout bases in the Hilbert space and therefore, conceppsodsictionof the Higgs boson or its
partial decay widthsdo not have a precise meaning and should be replaced by ¢mmadized
definitions which respect first principles of quantum fielddty.

The quest for a proper treatment of unstable particles detels to the sixties and to the work
of Veltman [19] (for earlier attempts see Ref. [20]); moreawtly the question has been readdressed
by Sirlin and collaborators [21]. The staring point is th@cept of complex pole. The Higgs boson
complex pole §,) is the solution of the equation

Si— M2+ Zy(s0) =0, (4.1)

whereM? is the lagrangian Higgs boson mass, real by constructiahZas(s,) is the Higgs self-
energy evaluated &= s,. This definition is gauge invariant, while the usual on-sredl Higgs
mass is not. The Dyson re-summed Higgs propagator is given by

-1 . ZHH(S)_ZHH(S-l)

AH(S)z(S—&)‘l[lJrHHH(S)], Zy=14+Mu,  Mu(9= —y . (4.2)

At the parton level th&-matrix for a process— f can be written as
Sti = Vi(8) 8 (9) V4 (8) + Bif (9), (4.3)

whereV; is the production vertex— H (e.g.gg— H), V; is the decay verteld — f (e.g.H — yy)
andB;; is the non-resonant background (egg.— yy boxes). Using Eq.(4.2) we can write

5= [ o] 2 [ vt i U HITH ) o

where we have extracted the relevant pseudo-observable,

S(He — f) = 2, 2(s) Ve (s4), (4.5)

which is gauge independent by construction. A partial degagh can then be defined as

4
(e 1) = 20 [ao B (o) Y

spins

2
)

S(He— f)

(4.6)

where the integration is over the phase space spanned by with the constrain®, = 3 ps.
Similarly one can define a production cross section usinggeado-observablg(i — Hc).

In order to compute these pseudo-observables we rely onuigéng principle that Green
functions involving unstable particles should smoothlypraach the value for stable ones (the
usual Feynman-i0 prescription) when the couplings of the theory (and tteeethe imaginary
parts of masses and momenta) tend to zero. To illustraterdeegure we consider the following
one-loop scalar two-point function with complex massesmaonthenta:

1
H@ - A—/dxlnx, X= -8 X(1X) M2, 8 =M2—i My, MP=pPiyu. (4.7)
0
Since boths, andn? are complex it can happen thatis in the second quadrant, i.e. Re 0 and

Imy > 0. In this case (and just in this case) our guiding principleiolated:

im Iminx] = 7 4 Feynman prescription for real masses_

y.,Fh—0 (i.e.y,ly =0, pu? — u?—io) —m (4.8)
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It is important to notice that this can happen only with coexphomenta (i.e. complex,): if just
masses are complex, the imaginary part of the argument dbgagithm is always negative. In
order to restore the proper real limit, we define an analytioatinuation of the logarithm on the
second Riemann sheet, by addingi T to it when x is in the second quadrant. In general let us
consider Iriz), wherezis a complex quantity which in the real mass limit gets an imagy part of
+i0 from the Feynman prescription. The proper analyticalioo@ation of Inz) is then given by:

In(z) — In*(2) =In(2) £ 2i m8(—Rez) B(FIm2) (4.9)

This is equivalent to moving the cut of the logarithm from tregjative real axis to the positive (for
In~) or negative (for I) imaginary axis. If this is done at the integrand level (ashi@ present
example) one has to take care that the integration contas ot cross the new cut. In that case a
contour deformation in the complexplane has to be performed in order to get the correct result.
Taking into consideration all these technical aspects we\able to estimate the gauge in-
variant production cross section ¢ — H at one-loop level and compare it with the usual one
in the complex mass scheme. The effect, given in Fig. 3, idigibg for a Higgs mass up to
thett-threshold, but becomes large for an heavy Higgs (of theramt@CD corrections), making
guestionable the use of a perturbative description of tlyg$tresonant part fqyp — H.

25 F
20
< 15 r
o 10
(O]
S L
_5 L L L L L

100 150 200 250 300 350 400
Hy [GeV]
Figure 3: Comparison of the common production cross sectiggg — H) with the gauge invariant
pseudo-observabte-p(gg— H) based on the Higgs complex pae dcp = ocp/0 — 1.
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