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1. Introduction

Gluon fusion is the main production channel of the SM Higgs-boson at hadron colliders, and
both virtual and real corrections have been thoroughly investigated since the beginning of the 90’s.

The QCD next-to-leading order (NLO) radiative correctionsto the total Higgs-production
cross section have been first computed below thett threshold in Ref. [1], and using an effective-
Lagrangian approach, where the top quark is integrated out,in Ref. [2]. Formally, the second
method defines the heavy-top limit, and it has represented the starting point for subsequent higher
order improvements. The result for the entire Higgs-mass range at NLO was derived in Ref. [3].
Since QCD NLO corrections increase the cross section by morethan 70%, there was a flurry of
activity on higher order QCD effects. The next-to-next-to-leading order (NNLO) corrections to
the total cross section have been calculated just in the heavy-top limit: partial results have been
obtained in Ref. [4] and the complete NNLO cross section has been derived in Ref. [5]. An all-
order resummed calculation of multiple soft-gluon emission at next-to-next-to-leading logarith-
mic (NNLL) accuracy has been performed in Ref. [6] and including higher logarithmic orders in
Ref. [7]. Improvements with respect to the heavy-top limit have been recently obtained by the
authors of Ref. [8].

The electroweak NLO corrections to the total cross section were evaluated in Ref. [9] in the
heavy-top limit, and turned out to be less than 1%. The contribution due to the light fermions has
been calculated analytically in Ref. [10], and found to be more sizable; the remaining component
of the amplitude involving the top quark has been computed bymeans of a Taylor expansion in the
Higgs external momentum in Ref. [11] and is, for obvious reasons, valid in the kinematical region
below theWW threshold. The complete electroweak corrections were computed in Ref. [12] and
are the topics of this article. Under the hypothesis of factorization with respect to the dominant
QCD soft and collinear radiation, the impact of the EW corrections to Higgs-production in proton-
proton collisions has been estimated in Ref. [13]. The factorization hypothesis can be verified
just by the direct computation of the EW×QCD corrections. The contribution to these corrections
coming from top-loops was evaluated in Ref. [14] in the heavy-top limit, while the authors of
Ref. [15] used an effective theory, valid in the small Higgs mass range, to compute the corrections
arising from light quarks, finding agreement with the factorization hypothesis.

2. Computation of the EW corrections

The main problem that one encounters in the computation of electroweak processes at two-
loop level is connected to the presence of many different mass scales. The common approach,
which aims to write two-loop amplitudes in terms of analyticfunctions, relies on expansions in
some of the scales of the problem restricting however the validity of the result to some regions of
the parametric space. In order to have a result valid everywhere, we have abandoned the analytic
way for a numerical evaluation of Feynman diagrams. In the numerical approach the (many) heavy
mass scales can be easily treated, but a special care has to bedevoted to light particles. Their
small masses are natural regulators for the collinear singularities, but generate instabilities in the
numerical integration. Therefore we have developed some techniques to extract explicitly the di-
vergent behavior in these small masses, which are of logarithmic type. In the production process
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gg→ H the total amplitude is free from collinear divergences and we could verify analytically that
the logarithms in the small masses cancel when the contributions of all diagrams are summed up.

The strategy to obtain stable integral representations starts with Feynman parametrization.
After the extraction of possible collinear logarithms the integrand always takes the form:

zn1
1 · · ·znk

k Vµ(z1, . . . ,zk) lnmV(z1, . . . ,zk), µ = −1,−2, (2.1)

wherez1, . . . ,zk are the Feynman variables, integrated in some finite domain (⊆ [0,1]k) andn1, . . . ,nk

are natural numbers. The functionV is quadratic with respect to a subset{zi} of {z1, . . . ,zk} and
eachz2

i is proportional to one external squared momentum. This is a general feature of two-loop
diagrams. The idea is to manipulate the integral and put it inthe following form:

∫

dz
Q(z)
U(z)

f

(

U(z)
P(z)

)

(2.2)

where the functionf must satisfyf (0) = 0 (possible candidates are the Spence functions lnn(1+x),
Lin(x), Sn,p(x)) andQ, U andP are polynomials. In this way the possible zeros of the denominator
U are compensated by the “regulating function”f and the integral has no unstable points anymore.

In the case where the quadratic is not complete (i.e. some external squared momenta vanish)
the solution is simple. For the processgg→ H the two external squared momenta corresponding
to the two gluons are always zero and therefore the quadraticV can be written asV = axy+bx+

cy+ d, wherex,y are two integration variables and the parametersa,b,c,d depend on the other
variables and on the masses and momenta. Forµ = −1,−2 andm= 0 we can use the following
relations (similar relations hold form> 0):

1
Ax+B

= ∂x
1
A

ln
(

1+
A
B

x
)

A = ay+b, B = cy+d

1
(axy+bx+cy+d)2 = −∂x ∂y

1
ad−bc

ln

{

1+
(ad−bc)x

b(axy+bx+cy+d)

}

. (2.3)

The two right-hand sides are exactly in the desired form: thezeros of the denominator correspond
to the zeros of the logarithms. After an integration by partsto get rid of the derivatives, the result
is ready to be integrated numerically.

3. Behavior around WW and ZZ thresholds

As explained in details in Refs. [16, 12] the two-loop amplitude for the partonic processgg→
H presents a singular behavior forMH = 2MW andMH = 2MZ. This singularity is of squared root
type and is represented by terms proportional to the inversepower of the threshold factorβi,

βi =
√

1−4M2
i /M2

H
, with Mi = MW ,MZ. (3.1)

The origin of this singularity is the derivative of the Higgsone-loop self-energy, associated with
the Higgs wave function renormalization, as depicted in Fig. 1

(1-loop diagrams)⊗ (H wave-function FR) =⇒
H

MW,MZ

×
H

Figure 1: Singularβ−1 behavior at the normalm threshold coming from WFR.
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A pragmatic gauge-invariant solution to the problem of threshold singularities due to unstable
particles has been introduced and formalized in Ref. [17] and is termed in the following as minimal
complex-mass (MCM) scheme. In this scheme the NLO amplitudeis decomposed according to

A
NLO = ∑

i=W,Z

ASR,i

βi
+AREM, (3.2)

where square-root-singular terms (ASR,i ) have been isolated from the component which is finite for
βi → 0 (AREM). After proving that all coefficients in Eq.(3.2) satisfy separately the Ward identities,
we minimally modify the amplitude introducing the complex-mass scheme of Ref. [18] for the
divergent terms: the real masses of theW and theZ bosons are replaced by the corresponding
complex poles in the threshold factorsβi, i = W,Z and in the coefficientsASR,i and the real parts of
theW and theZ self-energies stemming from mass renormalization at one loop are traded for the
complete self-energies, including imaginary parts.

The MCM scheme allows for a straightforward removal of unphysical infinities, but it does not
deal with the artificial cusps associated with the crossing of normal thresholds, as shown in Fig. 2,
which represent a concrete problem in assessing the impact of two-loop electroweak corrections.
We have therefore undertaken the task of introducing the complete complex-mass (CM) scheme
of Ref. [18], where the procedure described for the divergent terms of Eq.(3.2) has been extended
to the remainderAREM. In Fig. 2 are shown the two-loop electroweak percentage corrections for
the partonic cross sectiongg→ H. The big contribution arising at largeMH is basically due to the
scalar sector of the SM, which is approaching the strong regime. This is a two-loop feature, being
the one loop notoriously protected by Veltman’s theorem.
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Figure 2: Two-loop electroweak percentage corrections for the partonic cross sectiongg→ H. The solid
line denotes the total electroweak corrections in the MC scheme, including also top quarks, while the dotted
line denotes the contribution coming from light fermion loops in the MCM scheme.

4. Unstable particles and gauge invariance

As pointed out in Ref. [17], the doubly-contracted Ward identity for the amplitude of the decay
H → γγ is not satisfied at two-loop level above theWW threshold: the on-shell mass renormaliza-
tion of the Higgs boson introduces the real part of the one-loop self-energy which does not cancel
with the corresponding term coming from the pure loop part, containing the full self-energy. Gauge
invariance is then violated unless one restores it by hand. The origin of the problem is connected to
the common definition of production cross section and decay width, which treats the Higgs boson
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as an asymptotic state. But the Higgs boson is an unstable particle and should be removed from
in/out bases in the Hilbert space and therefore, concepts asproductionof the Higgs boson or its
partial decay widthsdo not have a precise meaning and should be replaced by conventionalized
definitions which respect first principles of quantum field theory.

The quest for a proper treatment of unstable particles datesback to the sixties and to the work
of Veltman [19] (for earlier attempts see Ref. [20]); more recently the question has been readdressed
by Sirlin and collaborators [21]. The staring point is the concept of complex pole. The Higgs boson
complex pole (sH) is the solution of the equation

sH −M2
H + ΣHH(sH) = 0, (4.1)

whereM2
H is the lagrangian Higgs boson mass, real by construction, and ΣHH(sH) is the Higgs self-

energy evaluated ats= sH . This definition is gauge invariant, while the usual on-shell real Higgs
mass is not. The Dyson re-summed Higgs propagator is given by

∆H(s) = (s−sH)−1
[

1+ ΠHH(s)
]−1

, ZH = 1+ ΠHH, ΠHH(s) =
ΣHH(s)−ΣHH(sH)

s−sH

. (4.2)

At the parton level theS-matrix for a processi → f can be written as

Sf i = Vi(s)∆H(s)Vf (s)+Bi f (s), (4.3)

whereVi is the production vertexi → H (e.g.gg→H), Vf is the decay vertexH → f (e.g.H → γγ)
andBi f is the non-resonant background (e.g.gg→ γγ boxes). Using Eq.(4.2) we can write

Sf i =
[

Z
− 1

2
H (s)Vi(s)

] 1
s−sH

[

Z
− 1

2
H (s)Vf (s)

]

+Bi f (s) =
S(i→Hc)S(Hc→ f )

s−sH

+ non resonant
terms (4.4)

where we have extracted the relevant pseudo-observable,

S(Hc → f ) = Z−1/2
H (sH)Vf (sH), (4.5)

which is gauge independent by construction. A partial decaywidth can then be defined as

µH Γ(Hc → f ) =
(2π)4

2

∫

dΦ f (PH , {pf }) ∑
spins

∣

∣

∣
S(Hc → f )

∣

∣

∣

2
, (4.6)

where the integration is over the phase space spanned by| f >, with the constraintPH = ∑ pf .
Similarly one can define a production cross section using thepseudo-observableS(i→Hc).

In order to compute these pseudo-observables we rely on the guiding principle that Green
functions involving unstable particles should smoothly approach the value for stable ones (the
usual Feynman− i 0 prescription) when the couplings of the theory (and therefore the imaginary
parts of masses and momenta) tend to zero. To illustrate the procedure we consider the following
one-loop scalar two-point function with complex masses andmomenta:

H m
= ∆−

∫ 1

0
dxln χ , χ=−sH x(1−x)+m2, sH = M2

H − i ΓH MH, m2 = µ2−i γ µ . (4.7)

Since bothsH andm2 are complex it can happen thatχ is in the second quadrant, i.e. Reχ < 0 and
Imχ > 0. In this case (and just in this case) our guiding principle is violated:

lim
γ ,ΓH→0

Im[ln χ ] = π 6= Feynman prescription for real masses
(i.e. γ ,ΓH = 0, µ2 → µ2− i0)

= −π (4.8)
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It is important to notice that this can happen only with complex momenta (i.e. complexsH): if just
masses are complex, the imaginary part of the argument of thelogarithm is always negative. In
order to restore the proper real limit, we define an analytical continuation of the logarithm on the
second Riemann sheet, by adding−2i π to it whenχ is in the second quadrant. In general let us
consider ln(z), wherez is a complex quantity which in the real mass limit gets an imaginary part of
± i 0 from the Feynman prescription. The proper analytical continuation of ln(z) is then given by:

ln(z) → ln±(z) = ln(z)±2i πθ(−Rez)θ(∓ Imz) (4.9)

This is equivalent to moving the cut of the logarithm from thenegative real axis to the positive (for
ln−) or negative (for ln+) imaginary axis. If this is done at the integrand level (as inthe present
example) one has to take care that the integration contour does not cross the new cut. In that case a
contour deformation in the complexx plane has to be performed in order to get the correct result.

Taking into consideration all these technical aspects we were able to estimate the gauge in-
variant production cross section togg→ H at one-loop level and compare it with the usual one
in the complex mass scheme. The effect, given in Fig. 3, is negligible for a Higgs mass up to
the tt̄-threshold, but becomes large for an heavy Higgs (of the order of QCD corrections), making
questionable the use of a perturbative description of the Higgs-resonant part forpp→ H.
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Figure 3: Comparison of the common production cross sectionσ(gg → H) with the gauge invariant
pseudo-observableσCP(gg→ H) based on the Higgs complex polesH : δCP = σCP/σ −1.
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