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1. Introduction

Final states containing hadronic jets are produced at large rates atrfgigly oarticle collid-
ers. Owing to their large production cross sections, various jet olddes/aan be measured to a
high statistical accuracy. However, experimental data on these obkeseae often so precise that
meaningful precision studies must rely on theoretical predictions thattarpative QCD requires
corrections at next-to-next-to-leading order (NNLO).

At NLO and NNLO the contribution from real and virtual corrections apagately divergent
and, while infrared singularities from purely virtual corrections areiobthimmediately after inte-
gration over the loop momenta, their extraction from purely real or mixedvigakl contributions
is much more involved. In the latter case the singularities become explicit ontyraigrating the
matrix element over the appropriate phase space. Since the integration istiofi@scases not
feasible analytically, one need to extract infrared divergencies at tbgrand level and construct
subtraction terms which should satisfy the following two conditions: (A) theyukhapproximate
the real radiation matrix element in all singular limits, and (B) they should becritly simple
to be integrated analytically over a section of the phase space that encempdisregions cor-
responding to singular configurations. In the contribution targjet cross section at NLO and
NNLO the subtraction terms are added and subtracted in the following way:

donLo = / doR o —doS o) + [/ dos +/ do:t ] 1.1
NLO d¢m+1( NLO NLO) g, (oot [ GOnio (1.1)
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where @R is the real radiation contribution,a and dj,l,/ﬁfo the subtraction terms of the real
and real-virtual contributions respectively anqvo“ is the virtual contribution at loop (| =NLO,
NNLO).

In the last decades several subtraction methods were developed diN4JGand NNLO [5—
10]. One of these methods is the so-called antenna subtraction, whiclerixaesicat NNLO in [11]
for partons only in the final state. The antenna subtraction formalism cetsthe subtraction
terms from antenna functions. Each antenna function encapsulatesgailasitimits due to the
emission of one or two unresolved partons between two colour-conneatddadiator partons.
This construction exploits the universal factorization of matrix elements basigspace in all unre-
solved limits. The antenna functions are derived systematically from physatex elements [12].
For processes with initial-state partons, antenna subtraction has beemdtkld out only to NLO
so far [13]. In this case, one encounters two new types of antenitidng, initial-final antenna
function with one radiator parton in the initial state, and initial-initial antennatfans with both
radiator partons in the initial state. In this talk we present very recenitsesuthe derivation of all
NNLO initial-final antenna functions and their integration over the appragyidactorized phase
space. Finally we show how our results could be cross-checked for caaes against the known
NNLO coefficient functions for deep inelastic scattering. The initial-fimaeana functions form
part of the full set of antenna functions needed for NNLO calculatibhadron collider processes,
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and are, together with the already known final-final antenna subtractios,teufficient for NNLO
calculations of jet observables in deeply inelastic lepton-hadron scattering

2. Initial final antenna subtraction at NNLO

In the case of one parton in the initial state the subtraction term at NLO hadllihweihg form

d6SD(p,r) =AY dPmia(Ke, ..., Knet P,T
(p.r) le m1(Ke Kmt1; P )Sm+1

X in?jk"%m(kla"'7KK7"'akm+l;xp7r>|2‘]f(ﬂm)(kla"'aKKa'”vkm—Fl)7 (21)
J

wherei labels the hard radiator with momentymin the initial state. The additional momentum
stands for the momentum of the second incoming particle which can either ieatolocolorless.
This contribution has to be appropriately convoluted with the parton distribfuinetion f;. The
tree antenné(i?jk, depending only on the original momerak; andkg, contains all the configu-
rations in which partor) becomes unresolved. Theparton amplitude depends only on redefined
on-shell momentéy,...,Kg,..., and on the momentum fraction The jet function,]&m), in (2.1)
depends on the momeritaandk, only throughKy .

As eq. (1.2) shows, at NNLO two types of contributionsntget observables require sub-
traction: the tree-levah+ 2 parton matrix elements (where one or two partons can become unre-
solved), and the one-loap+ 1 parton matrix elements (where one parton can become unresolved).
In doNSNLO, we have to distinguish four different types of unresolved configuration

(&) One unresolved parton but the experimental observable selects {etly;
(b) Two colour-connected unresolved partons (colour-connected)

(c) Two unresolved partons that are not colour connected but shemexmon radiator (almost
colour-unconnected);

(d) Two unresolved partons that are well separated from each othies tolour chain (colour-
unconnected).

Among those, configuration (a) is properly accounted for by a singleldéxes three-parton an-
tenna function like used already at NLO. Configuration (b) requiresealéneel four-parton an-
tenna function (two unresolved partons emitted between a pair of harchggrechile (c) and (d)
are accounted for by products of two tree-level three-parton anfencdons. On the other side,
the one-loop single unresolved subtraction temﬁ\ﬂ,@ﬂo must account for three types of singular
contributions:

(a) Explicitinfrared poles of the virtual one-logm+ 1) parton matrix element.
(b) Single unresolved limits of the virtual one-logm+ 1) parton matrix element.

(c) Terms common to both above contributions, which are oversubtracted.
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For all these cases the detailed form of the subtraction term is given in Thé] only genuinely
new ingredient appearing at NNLO are the four-parton initial-final alae‘nnctionxi?jkl, which
can be obtained by crossing the corresponding final-final antenwcéidos, and one-loop three-
parton initial-final antenna functio)‘ii}jk which can be obtained by crossing from their final-final
counterparts, listed in [11]. Both have to be integrated over the appteptiase space.

3. Integration of initial-final antenna functions at NNLO

The initial-final antenna functions all have the scattering kinematie;, — p1 + p2(+pPs),
where

P=-Q*<0, p?=0, z =p5=p5=0,

and ps is present only for the NNLO real radiation antenna functions. Thusgriaten over the
final-state two-parton or three-parton phase space yields a result dépemds only o®? andz.

The NNLO double real radiation antenna functioq%kI have to be integrated over the in-
clusive three-parton final state phase space. The NNLO one-loofe sies radiation antenna
function::,)(i}jk are integrated over the inclusive two-parton final state phase spat@vanthe
loop momentum. For both types of integration, we first expressed all ppase gtegrals as loop
integrals with cut propagators [15], and then employed the by-now sttetzhnique of reduction
to master integrals using integration-by-parts (IBP, [16]) and Lorengriarnce (LI, [17]) identi-
ties among the integrals of any given topology. After carrying out theatsmhy we found nine
master integrals for the NNLO double real radiation antenna functionsiantester integrals for
the NNLO one-loop single real radiation antennae. All the masters integeadhawn in Figure 1.
The convention for naming the master integrals follows the labelling of the ntongrae.

d
1[i,j,K _/W(sd(qwi_pl_pz_ps), where [dp] — (gn';’d5+(pz). (3.1)
For the explicit definition of the propagatdps used in Figure 1 we refer to [14].
All masters, except1, 2,4, 5|, have been computed by direct integration and by the differential
equations method, supplemented, where necessary, by a direct cafcatatio 1 after factorizing
the leading singularity. Where appropriate, we compared our results taxginessions in the
appendix of [18], finding full agreement. The explicit results of the maistexgrals up to the
needed order i as well as the integrated initial-final antenna functions can be found in [14]

4. Rederivation of NNLO coefficient functions

Being derived from physical matrix elements, the integrated antenna fosatan be com-
pared to results from literature for inclusive cross sections or coeffiéimctions, as was done
previously for the final-final antennae in [12, 22]. In the case of the Iitial antennae, we can
compare the integrated quark-antiquark antennae and gluon-gluomaetegainst NNLO correc-
tions to deep inelastic coefficient functions known in the literature. The foomes can be checked
against DIS structure function calculations [18] whereas the latter caornpared to the-DIS
structure functions computed in [19, 20]. These structure functionstdaained in an effective the-
ory with a scalarp coupled to the square to the gluon field strength tensor. For example, tiveglead
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Figure 1: Master integrals for the phase space integration of theldaehl tree level initial-final antennae
at NNLO (left), and for the loop plus phase space integradicthe one loop initial-final antennae at NNLO
(right). The double line in the external states represémtsff-shell momentung with g2 = —Q?, the single
one is the incoming parton. All internal lines are massl@$g cut propagators are the ones intersected by
the dotted line.

colour piece of the two-loop gluon initiated structure function can be writtéheafollowing linear
combination of antennae:

) 0 1R () (1)2
09 |y = Togust 47 g T40(1-2) <2Fg +Fg ) 2 (4.1)
whereﬁgggg is the integrated tree level gluon-gluon double real radiation anteﬁé@ the in-

tegrated one-loop gluon-gluon antenna &é& and Fg(z) are respectively the one- and two-loop
coefficients of the gluon form factor given in [21]. An explicit expiiessfor the two-loop quark-
and gluon-initiated structure functions can be found in [14,20]. Théaxinear combinations of
antennae reproducing the different color contributions of the coetfiimctions are given in [14].

The quark-gluon antennae, derived from neutralino decay, céeretsociated to any physical
process and only the deepest pole structure could be checked agaorsbination of Altarelli-
Parisi splitting functions.

5. Conclusions

In this talk, we presented the extension of the NNLO antenna subtractioraliem [11] to
include initial-final antenna configurations, where one of the hard radpgdons is in the ini-
tial state. Furthermore a highly non-trivial check of our results wasopméd by rederiving the
two-loop coefficient functions for deep inelastic scattering. The sufidraterms presented here
allow the construction of a parton-level event generator program éocalculation of NNLO cor-
rections to jet production observables in deeply inelastic electron-protdtesng. Moreover, the
initial-final antenna functions derived here are an important ingredighttoalculation of NNLO
corrections to jet observables at hadron colliders, which will be possiide the computation of
the initial-initial antenna configurations will be accomplished [23].
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