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1. Introduction

In perturbation theory, next-to-leading order (NLO) predictions consist of three distinct contribu-
tions. There is the Born contribution, which is the lowest order for the process to occur, with all final
state particles resolved. The second contribution is the (ultraviolet renormalized) virtual correction that
has the same external particles as the Born, but with an extrapower of the coupling constant. This leads
to one1 internal loop of particles with a loop momentum that has to beintegrated over. And thirdly,
the real emission contribution that has one extra particle in the final state, which may or may not be
resolved, has to be included. We can present these three contributions to a NLO prediction for a 2→ m
process schematically as

σNLO =

∫

m
dσBorn+

∫

m
dσ virt. +

∫

m+1
dσ real, (1.1)

where the integrals are over them-particle phase space for the Born and the virtual contributions and
over the(m+1)-particle phase space for the real emission corrections.

In the (ultraviolet renormalized) virtual corrections theloop integral over the internal momentum
is divergent. Also the phase-space integral over the (possibly) unresolved particle in the real emission
is divergent. These divergences are of infrared origin and only after the virtual and the real emission
contributions are added together, they cancel against eachother. In almost all practical calculations for
NLO QCD predictions these integrations are performed usinga dimensional regularization scheme in
which the dimension of these integrals is shifted away from 4, conventionally by a factor 2ε . After
integration the divergences will show up as explicit poles in 1/ε and their cancellation can be verified
explicitly.

The calculation of an integral in a non-integer number of dimensions can only be done analytically.
But, experimental analyses require the possibility to makecomplicated phase-space cuts and therefore
it is an impossible task to perform the phase-space integrals by analytic means. A Monte Carlo tech-
nique is favoured. However, this numerical approach implies that the phase-space integrals have to be
performed in 4 dimensions, which leads to infrared divergences for the real emission contributions.

There are two classes of solutions to this problem. They are the (approximate) phase-space slicing
or the (exact) subtraction method; it is nowadays acknowledged that the slicing method is unsuited for
describing complicated final states, such as those in multi-jet production. In the subtraction method
a term which has the same singularity structure as the real emission corrections is added to these
contributions. This cancels the infrared divergences in the phase space integral. The subtraction terms
should be simple enough such that the one-particle phase-space integral (of the unresolved particle) can
be done analytically in dimensional regularization. Schematically we can write this as:

σNLO =

∫

m

[

dσBorn+dσ virt. +

∫

1
dσ subtr.

]

+

∫

m+1

[

dσ real−dσ subtr.
]

. (1.2)

The remaining phase-space integrals can now be performed numerically and give finite results for
infrared safe observables.

In the next section we describe the codeMadFKS [1] in which the subtraction method introduced
by Frixione, Kunszt and Signer (FKS) [2] has been implemented. Another widely used subtraction
method, originally proposed by Catani and Seymour [3], has already been implemented by several
groups [4]. In Sec. 3 we shown some results for NLO predictions for event shapes in electron-positron
collisions. We finish with the conclusions.

1For processes without atree-levelBorn (such as Higgs production via gluon fusion), the virtual corrections have always
one loop more than the Born.

2



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
6
6

MadFKS Rikkert Frederix

2. Automated subtraction

Before explaining some of the features of theMadFKS code, the FKS subtraction method is shortly
reviewed here in a schematic way. For more detailed explanations we refer to the papers of Refs. [1,2].

2.1 FKS subtraction

The real emission contribution in Eq. (1.1) can be written schematically as

dσ real = |Mm+1|2dφm+1, (2.1)

where|Mm+1|2 is the matrix element squared and dφm+1 the phase-space measure. The matrix element
squared blows up2 like 1

ξi

1
1−yi j

, whereξi is the energy of final state particlei (in the partonic center-

of-mass frame) over the total partonic energy,ξi = 2Ei/
√

ŝ, andyi j is the cosine of the angle between
particle i and j, yi j = cosθi j . The crucial step in the FKS subtraction method is to realizethat the
phase-space can be partitioned into regions that have at most one collinear and/or one soft divergence.
This can be achieved by multiplying Eq. (2.1) by so-calledS-functions

dσ real = ∑
i j -pairs

Si j |Mm+1|2dφm+1, (2.2)

where theS-functions have been defined in such a way that they vanish in all singular limits not related
to particle i becoming soft or particlesi and j collinear and that the sum over all pairs gives one,

∑i j -pairsSi j = 1. The precise definition of theS-functions used is not important. The result is that each
term of the sum in Eq. (2.2) is finite over all of phase space except if the energy of particlei goes to
zero or particlesi and j become collinear.

Because we know exactly where the infrared singularities are for a given partition, it is now rela-
tively straight-forward to regularize these divergences.This amounts to replacing each of the terms in
the sum of Eq. (2.2) by

(

1
ξi

)

ξcut

(

1
1−yi j

)

δO

ξi(1−yi j )Si j |Mm+1|2dφm+1, (2.3)

where we have used generalized plus distributions defined, with a smooth test functionf (x), as

∫

dx

(

1
x

)

xcut

f (x) =
∫

dx
f (x)− f (0)Θ(xcut −x)

x
. (2.4)

This leads to (maximally) three counter terms for a single(m+1)-particle event:

• the soft counter event:ξi = 0;

• the collinear counter event:yi j = 1;

• and the soft-collinear counter event:ξi = 0 andyi j = 1;

Of course, for numerical evaluation the explicitξi and(1− yi j ) in Eq. (2.3) should be canceled ana-
lytically against the divergences in the matrix element squared. But this yields no problem, because it
is appreciated that in the collinear limit the real emissionmatrix element squared is equal to the Born
times the Altarelli-Parisi splitting functions and in the soft limit by the color-linked Borns times the
eikonals. This defines the last two terms of Eq. (1.2).

2The phase space measure includes an implicit factorξi . It has been assumed that this has already canceled one of the1
ξi

in the matrix element squared.
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In order not to change the NLO prediction, the “integrated subtraction terms” need to be added to
the virtual corrections,i.e., the third term in Eq. (1.2). The integral over the unresolved particle can be
performed analytically and is process independent; it results in terms proportional to the (color-linked)
Borns. For the explicit formulas of these integrated subtraction terms we refer to the paper of Ref. [1].

2.2 MadFKS

In MadFKS the generation of all the tree-level structures to a NLO prediction has been automated
within the MadGraph/MadEvent [5] framework. That is, given the(m+ 1) process as input, a
Fortran code is created to analyze the Born, the real emission and the(integrated) subtraction terms.
Furthermore a parametrization for the phase space is set-upthat is parallel in nature and results in an
efficient phase-space integration to give the results in theform of plots for distributions.

To reduce the number of phase space partitions in Eq. (2.2) and with that the total number of
subtraction terms, the symmetry of the matrix elements and the phase space is used. For example, for
all final state gluons only one contribution to the partitionneeds to be included to correctly cover the
whole phase space and subtract all their corresponding singularities. This greatly reduces the growth
of the number of subtractions terms with the number of external particles. In fact, only adding new
(anti-)quark flavors or the first gluon increases the number of terms.

For the phase-space integration of each of the phase-space partitions, we have adopted the “single-
diagram-enhanced multi-channel” integration method usedby MadGraph/MadEvent. Even though
the phase-space integration in the sum is over the(m+ 1)-particle phase space, we use the Born dia-
grams to set-up the channels. To get the(m+1)-particle phase space from the Born, we generate three
extra random numbers related to theξi, yi j and azimuthφ of the unresolved particle and perform a
boost to put all the particles back on-shell. Each of the integration channels can be run on a separate
computer.

Another significant improvement is achieved by reducing thenumber of times the Born matrix ele-
ments are computed. The Born itself, the collinear counter term, the soft counter term, the soft-collinear
counter term, the three integrated subtraction terms and the enhancement factor for the multi-channel
integration are all places where the Born is needed. With ourchoice of the phase space parametrization
and carefully caching all the helicity amplitudes the Born matrix elements need to be computed only
once for each(m+1)-particle phase space point.

For phase space partitions that have a massive particlej, only the soft counter event for (massless)
particle i needs to be included: there is no singularity in the collinear limit for particles i and j. Due
to the fact that the form of the soft singularity is independent of the spin of the particle, the implemen-
tation of the subtraction method works without modificationalso for all the New Physics models in
MadGraph/MadEvent that include new massive QCD particles, like squarks in SUSY.

There are many internal non-physical parameters that can be“tuned” if need be: theξcut and
δO that restrict the region of subtraction and the explicit form of theS-functions. We have checked
that the final results computed byMadFKS do not depend on these internal parameters. Also the
integration uncertainty does not dependent on the values ofthese parameters within reasonable ranges.
We therefore conclude that the implementation is correct and the integration over the phase space well-
understood.

Contrary to the Born, the real emission and the subtraction terms that are automated inMadFKS,
the fully differential (finite parts of the) virtual corrections have to be provided by the user.MadFKS
follows the proposal for the Binoth Les Houches Accord for the interface between Monte Carlo and
one-loop programs [6]. Therefore, if the user provides a code in the form of a library with a subroutine
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Figure 1: Inclusive cosθ for 2 jet production and Thrust distribution for 3 jet production at LO (blue dashed)
and NLO (red solid) usingMadFKS andRocket.

that returns the size of the virtual corrections for a given phase-space point as prescribed by the Binoth
LHA proposal, it can easily be linked toMadFKS. For the moment, this interface has been tested with
theBlackHat [7] andRocket [8] one-loop programs.

So far, inMadFKS only the soft and final-state collinear subtraction terms have been implemented.
Although the formulas for the remaining (initial state collinear) subtraction terms have all been worked
out and implemented, this part of the code is still in testingphase and not yet ready to produce physics
results.

3. Selected results

As a proof of concept we show here some selected results for NLO corrections to electron–positron
collisions to 2, 3 and 4 jets at

√
ŝ= MZ and with the renormalization scale also equal to theZ boson

mass.
In Fig. 1 results forRocket linked toMadFKS are plotted. On the left hand side are the LO and

NLO predictions shown for the inclusive cosθ distribution in 2 jets production. This distribution is
defined as the cosine of the angle between the incoming electron direction and all of the final state jets,
defined according to the Durham jet algorithm and using the E-scheme to recombine the momenta,i.e.,
we add the particles four-momenta. On the right hand side arethe fixed LO and NLO predictions shown
of (one minus) the thrust distributions, which starts from Born-level 3 parton events and is therefore
shown for 3-jet events.

In Fig. 2 we show two distributions calculated by linkingBlackHat code to theMadFKS MC
program. In the plot on the left hand side, theC parameter is shown ine+e− → 3 jets at LO and NLO,
and in the plot of the right hand side theD parameter ine+e− → 4 jets.

4. Conclusions

For any NLO computation in QCD, both in the SM as well as BSM,MadFKS takes care of gen-
erating the Born, Real emission, (integrated) subtractionterms, phase-space integration and the overall
management of symmetry factors, subprocesses combination, etc. The only piece that the user should
provide is the (fully-differential) finite part of the one-loop contributions. So far, there are tested and
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Figure 2: C parameter for 3 jet production andD parameter for 4 jet production at LO (blue dashed) and NLO
(red solid) usingMadFKS andBlackHat.

working interfaces to theBlackHat andRocket codes following the proposal for the Binoth Les
Houches Accord. As a proof of concept, we have shown results for NLO predictions fore+e− → 2, 3
and 4 jets in the form of distributions for some event shapes.
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