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1. Introduction

In perturbation theory, next-to-leading order (NLO) prditins consist of three distinct contribu-
tions. There is the Born contribution, which is the lowestasrfor the process to occur, with all final
state particles resolved. The second contribution is theagiplet renormalized) virtual correction that
has the same external particles as the Born, but with an gsivar of the coupling constant. This leads
to oné internal loop of particles with a loop momentum that has tdartbegrated over. And thirdly,
the real emission contribution that has one extra partithhé final state, which may or may not be
resolved, has to be included. We can present these thregbotions to a NLO prediction for a 2» m
process schematically as

O.NLO — / daBorn+/ do.virt. + dareaI’ (l.l)
m m m+1
where the integrals are over theparticle phase space for the Born and the virtual coninhstand
over the(m+ 1)-particle phase space for the real emission corrections.

In the (ultraviolet renormalized) virtual corrections tlep integral over the internal momentum
is divergent. Also the phase-space integral over the (bly3sinresolved particle in the real emission
is divergent. These divergences are of infrared origin amy after the virtual and the real emission
contributions are added together, they cancel againstatheh In almost all practical calculations for
NLO QCD predictions these integrations are performed ugidgnensional regularization scheme in
which the dimension of these integrals is shifted away frgroghventionally by a factor2 After
integration the divergences will show up as explicit poled /e and their cancellation can be verified
explicitly.

The calculation of an integral in a non-integer number ofafisions can only be done analytically.
But, experimental analyses require the possibility to nadmplicated phase-space cuts and therefore
it is an impossible task to perform the phase-space in®gsabnalytic means. A Monte Carlo tech-
nigue is favoured. However, this numerical approach ingglet the phase-space integrals have to be
performed in 4 dimensions, which leads to infrared divecgsrfor the real emission contributions.

There are two classes of solutions to this problem. Theyheréapproximate) phase-space slicing
or the (exact) subtraction method; it is nowadays acknagdddhat the slicing method is unsuited for
describing complicated final states, such as those in peglfroduction. In the subtraction method
a term which has the same singularity structure as the re@s&m corrections is added to these
contributions. This cancels the infrared divergences éythase space integral. The subtraction terms
should be simple enough such that the one-particle phasm $ptegral (of the unresolved particle) can
be done analytically in dimensional regularization. Scagcally we can write this as:

O'NLO :/ [dGBom—l—dUVirt' I /'dasubtr_] n / [dareal_ dasubtr.]. (1_2)
m 1 m+1

The remaining phase-space integrals can now be performeetreally and give finite results for
infrared safe observables.

In the next section we describe the cadded FKS [1] in which the subtraction method introduced
by Frixione, Kunszt and Signer (FKS) [2] has been implem@&ntAnother widely used subtraction
method, originally proposed by Catani and Seymour [3], Hemady been implemented by several
groups [4]. In Sec. 3 we shown some results for NLO predistimn event shapes in electron-positron
collisions. We finish with the conclusions.

1For processes withoutteee-levelBorn (such as Higgs production via gluon fusion), the viramarections have always
one loop more than the Born.
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2. Automated subtraction

Before explaining some of the features of MedFKS code, the FKS subtraction method is shortly
reviewed here in a schematic way. For more detailed exptarsatve refer to the papers of Refs. [1, 2].

2.1 FKSsubtraction

The real emission contribution in Eq. (1.1) can be writtemesgatically as
do™® =M™ 2dgin, 1, (2.1)

where|M™1|2 is the matrix element squared angh the phase-space measure. The matrix element
squared blows uplike %1_—1),” whereé; is the energy of final state particigin the partonic center-
of-mass frame) over the total partonic ener§y-= 2E; /v/S, andy; j is the cosine of the angle between
particlei and j, y;j = cos6;. The crucial step in the FKS subtraction method is to reatlt the
phase-space can be partitioned into regions that have atome<ollinear and/or one soft divergence.

This can be achieved by multiplying Eq. (2.1) by so-calBfiinctions

do.reaI: z Sj ’Mmllzd%L (2_2)
ij-pairs

where theS-functions have been defined in such a way that they vanisthsimgular limits not related
to particlei becoming soft or particles and j collinear and that the sum over all pairs gives one,
Yij-pairsSj = 1. The precise definition of th&-functions used is not important. The result is that each
term of the sum in Eq. (2.2) is finite over all of phase spacepki the energy of particle goes to
zero or particles and j become collinear.

Because we know exactly where the infrared singularitief@ra given partition, it is now rela-
tively straight-forward to regularize these divergencBsis amounts to replacing each of the terms in
the sum of Eq. (2.2) by

1 1
(£) (555 aa-vsmmeda., 2.9
& e N1V /&
where we have used generalized plus distributions definigld avemooth test functiorii(x), as
/dx<}> f(x):/dxf(x)_f(o)@(xcm_x). (2.4)
X Xeut X

This leads to (maximally) three counter terms for a sirighet+ 1)-particle event:

e the soft counter eveng; = 0;
e the collinear counter eveny;; = 1,
¢ and the soft-collinear counter evedt:= 0 andy;; = 1,

Of course, for numerical evaluation the expliéjtand (1 —y;j) in Eq. (2.3) should be canceled ana-
lytically against the divergences in the matrix elementasgqd. But this yields no problem, because it
is appreciated that in the collinear limit the real emissiaatrix element squared is equal to the Born
times the Altarelli-Parisi splitting functions and in theftslimit by the color-linked Borns times the
eikonals. This defines the last two terms of Eq. (1.2).

2The phase space measure includes an implicit fagtdt has been assumed that this has already canceled onezbf the
in the matrix element squared.
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In order not to change the NLO prediction, the “integratebtsaction terms” need to be added to
the virtual corrections, e, the third term in Eq. (1.2). The integral over the unresdlparticle can be
performed analytically and is process independent; itieguterms proportional to the (color-linked)
Borns. For the explicit formulas of these integrated suiiva terms we refer to the paper of Ref. [1].

2.2 MadFKS

In MadFKS the generation of all the tree-level structures to a NLO jotexh has been automated
within the MadGr aph/ MadEvent [5] framework. That is, given thém+ 1) process as input, a
For t r an code is created to analyze the Born, the real emission ar(thtegrated) subtraction terms.
Furthermore a parametrization for the phase space is siatiis parallel in nature and results in an
efficient phase-space integration to give the results ifidima of plots for distributions.

To reduce the number of phase space partitions in Eq. (2@wath that the total number of
subtraction terms, the symmetry of the matrix elements haghase space is used. For example, for
all final state gluons only one contribution to the partitieeeds to be included to correctly cover the
whole phase space and subtract all their correspondingllaitities. This greatly reduces the growth
of the number of subtractions terms with the number of esleparticles. In fact, only adding new
(anti-)quark flavors or the first gluon increases the numbegras.

For the phase-space integration of each of the phase-spe@®ps, we have adopted the “single-
diagram-enhanced multi-channel” integration method UsedadGr aph/ MadEvent . Even though
the phase-space integration in the sum is overthe 1)-particle phase space, we use the Born dia-
grams to set-up the channels. To get fimet 1)-particle phase space from the Born, we generate three
extra random numbers related to they;; and azimuthg of the unresolved particle and perform a
boost to put all the particles back on-shell. Each of thegiratiton channels can be run on a separate
computer.

Another significant improvement is achieved by reducingnin@ber of times the Born matrix ele-
ments are computed. The Born itself, the collinear couetan tthe soft counter term, the soft-collinear
counter term, the three integrated subtraction terms amé@nhancement factor for the multi-channel
integration are all places where the Born is needed. Witttbaice of the phase space parametrization
and carefully caching all the helicity amplitudes the Boratrix elements need to be computed only
once for eaclim+ 1)-particle phase space point.

For phase space patrtitions that have a massive pajtioldy the soft counter event for (massless)
particlei needs to be included: there is no singularity in the collifi@ait for particlesi and j. Due
to the fact that the form of the soft singularity is indepemtdaf the spin of the particle, the implemen-
tation of the subtraction method works without modificatadeo for all the New Physics models in
MadG aph/ MadEvent that include new massive QCD patrticles, like squarks in SUSY

There are many internal non-physical parameters that cdiubed” if need be: the.; and
do that restrict the region of subtraction and the explicitfoof the Sfunctions. We have checked
that the final results computed WadFKS do not depend on these internal parameters. Also the
integration uncertainty does not dependent on the valutteest parameters within reasonable ranges.
We therefore conclude that the implementation is correditha integration over the phase space well-
understood.

Contrary to the Born, the real emission and the subtracéamg that are automated MadFKS,
the fully differential (finite parts of the) virtual corréohs have to be provided by the uséadFKS
follows the proposal for the Binoth Les Houches Accord fag thterface between Monte Carlo and
one-loop programs [6]. Therefore, if the user provides a&dodhe form of a library with a subroutine
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Figure 1: Inclusive co® for 2 jet production and Thrust distribution for 3 jet protioa at LO (blue dashed)
and NLO (red solid) usinypdFKS andRocket .

that returns the size of the virtual corrections for a giveage-space point as prescribed by the Binoth
LHA proposal, it can easily be linked taadFKS. For the moment, this interface has been tested with
theBl ackHat [7] andRocket [8] one-loop programs.

So far, inMadFKS only the soft and final-state collinear subtraction terms&eHzeen implemented.
Although the formulas for the remaining (initial state audlar) subtraction terms have all been worked
out and implemented, this part of the code is still in tesphgse and not yet ready to produce physics
results.

3. Sdlected results

As a proof of concept we show here some selected results f@r¢dicrections to electron—positron
collisions to 2, 3 and 4 jets at$ = M  and with the renormalization scale also equal toZHsoson
mass.

In Fig. 1 results folRocket linked toMadFKS are plotted. On the left hand side are the LO and
NLO predictions shown for the inclusive c@distribution in 2 jets production. This distribution is
defined as the cosine of the angle between the incoming @tedirection and all of the final state jets,
defined according to the Durham jet algorithm and using tisetteme to recombine the momerita,
we add the particles four-momenta. On the right hand sidtharixed LO and NLO predictions shown
of (one minus) the thrust distributions, which starts frowrlevel 3 parton events and is therefore
shown for 3-jet events.

In Fig. 2 we show two distributions calculated by linkiByj ackHat code to thevadFKS MC
program. In the plot on the left hand side, th@arameter is shown ie"e~ — 3 jets at LO and NLO,
and in the plot of the right hand side tBeparameter irete™ — 4 jets.

4. Conclusions

For any NLO computation in QCD, both in the SM as well as BS3MdJFKS takes care of gen-
erating the Born, Real emission, (integrated) subtradgoms, phase-space integration and the overall
management of symmetry factors, subprocesses combinatmnThe only piece that the user should
provide is the (fully-differential) finite part of the onedp contributions. So far, there are tested and
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Figure 2: C parameter for 3 jet production amdparameter for 4 jet production at LO (blue dashed) and NLO
(red solid) usingvadFKS andBIl ackHat .

working interfaces to th&l ackHat andRocket codes following the proposal for the Binoth Les
Houches Accord. As a proof of concept, we have shown resuitSl£O predictions foete™ — 2, 3
and 4 jets in the form of distributions for some event shapes.
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