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PHOTOS Monte Carlo is widely used for simulating QED effects in decay of intermediate parti-

cles and resonances. It can be easily connected to other mainprocess generators. In this paper we

consider decaying processesγ∗ → π+π−(γ) andK± → π+π−e±ν (γ) in the framework of Scalar

QED. These two processes are interesting not only for the technical aspect ofPHOTOS Monte

Carlo, but also for precision measurement ofαQED(MZ), g−2, as well asππ scattering lengths.
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1. Introduction

In high energy experiments, one of the crucial works is to compare new experiment results with
predictions from the theory. If the agreement is obtained, the theory is proved to be true. Otherwise
one may think that the theory calculations turned out to be wrong or the effect of new physics
appeared. Monte Carlo generators, rather than analytical calculations, are required to provide
theoretical results of real experiment interest. ThePHOTOSMonte Carlo [1, 2] is a universal Monte
Carlo algorithm that is designed for simulating QED radiative corrections in cascade decays. The
program is based on exact multiphoton phase space while the matrix element is approximately
taken as process independent multidimensional kernel.

Spin amplitudes are essential for design and tests of the Monte Carlo program, in particu-
lar for choice of the single emission kernels. The analysis of the spin amplitudes and tests for
the algorithm in case ofZ decay into pair of charged fermions, scalar particle decay into pair of
fermions, spinless particle into pair of scalars andW decay were studied in Refs. [3], [4], [5] and
[6, 7], respectively. In this paper we will studyγ∗ → π+π−(γ) decay. It not only provides example
for studies of Lorentz and gauge group properties of spin amplitudes and cross sections, but also
improves theoretical uncertainty ofPHOTOS for this decay.

Ke4 decay could give the unique information on the value ofs− and p− waveππ scattering
lengths. The high statistics measurements ofKe4 decay has been performed by NA48/2 collabora-
tion at CERN [8]. QED corrections to this process are known tobe non-negligible. They need to be
taken into account with the help of Monte Carlo because theirsize depend on detector acceptance.
In NA48 experiment, to take into account QED effects,PHOTOSMonte Carlo is used together with
Coulomb correction (see Ref. [8]).

2. γ∗ → π+π−(γ)

The amplitudes of the processe+e− → γ∗(p) → π+(q1)π−(q2)γ(k,ε) can be written asM =

VµHµ , whereVµ = v̄(p1,λ1)γµu(p2,λ2). The p1,λ1, p2,λ2 are momenta and helicities of the in-
coming electron and positron. Let us focus on the part for virtual photon decay. Following conven-
tions of Ref. [9], the final interaction part of the Born matrix element for such process is

Hµ
0 (p,q1,q2) =

eF2π(p2)

p2 (q1−q2)
µ . (2.1)

Here p = q1 + q2. If photon is present, this part of the amplitude can be written explicitly as sum
of two gauge invariant terms:

Hµ = Hµ
I +Hµ

II , (2.2)

Hµ
I =

e2F2π(p2)

p2

(

(q1−q2)
µ +kµ q2 ·k−q1 ·k

q2 ·k+q1 ·k

)(

q1 · ε∗

q1 ·k
−

q2 · ε∗

q2 ·k

)

, (2.3)

Hµ
II =

2e2F2π(p2)

p2

(

kµ(q1 · ε∗+q2 · ε∗)

q2 ·k+q1 ·k
− ε∗µ

)

. (2.4)

One can easily see that Eq.(2.3) has a typical form for amplitudes of QED exclusive exponentiation
[10], that is Born-like -expression multiplied by an eikonal factor

(

q1·ε∗
q1·k

− q2·ε∗
q2·k

)

. The expression
in front of the factor indeed approaches the Born one in soft photon and collinear photon limit.
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If one takes separation (2.2) for the calculation of two parts of spin amplitudes, then after spin
average, the expression for the cross section takes the form:

∑
λ ,ε

|M|2 = ∑
λ ,ε

|MI |
2 +∑

λ ,ε
|MII |

2 +2∑
λ ,ε

MIM
∗
II . (2.5)

We should stress that Eq.(2.5) can have its first term even closer to Born-times-eikonal-factor form.
For that purpose it is enough to adjust normalization of the first part of Eq.(2.5) to Born amplitude
times eikonal factor by replacing|MI |

2 with

|M′
I |

2 = |MI |
2 |~q1− ~q2|

2
Born

|~q1− ~q2 +~kq2·k−q1·k
q2·k+q1·k

|2
. (2.6)

Then adjustment to the remaining parts of Eq.(2.5) is necessary . Since∑λ ,ε |M
′
I |

2 is the expression
used inPHOTOS Monte Carlo in Ref. [5], such a modification is of interest. Inthe next step, we
will perform our numerical investigations with respect to Ref. [5] which is a reference for us.
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Figure 1: Comparison of results using∑λ ,ε |M
′
I |

2(green line) with that using matrix element taken from Ref.
[5] (red line). Black line represents their ratio.

We will show results at 2 GeV center of mass energy. Comparison of result from∑λ ,ε |M
′
I |

2

with result fromPHOTOS with matrix element taken from Ref. [5] is shown in Fig.1. Onecan see
that agreement is excellent all over the phase space for the case when distributions are averaged
over the orientation of the whole event with respect to incoming beams (or spin state of the virtual
photon). Differences appear in distribution sensitive to initial state spin orientation, see the right
side of Fig. 1. On this plot angular distribution ofπ+ momentum with respect to the beam line are
shown. Regions of phase space giving near zero contributionat the Born level are becoming more
populated if approximation for the photon radiation matrixelement [5] is used.

If instead of∑λ ,ε |M
′
I |

2 one would directly use∑λ ,ε |MI |
2, that is when normalization of Born-

like factor is not performed, difference with respect to formulas in Ref. [5] is much larger, see the
left side of Fig. 2. Finally let us compare result of completescalar QED matrix element with that
of matrix element taken from Ref. [5], see the right side of Fig. 2. At high photon energy region,
there is clear surplus of events with respect to formula in Ref. [5]. That contribution should not be
understood as bremsstrahlung, but rather as genuine process. Anyway in that region of phase space
scalar QED is not expected to work well.
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Figure 2: Comparison of results using∑λ ,ε |MI |
2 (left, green line) and complete matrix element (right, green

line) with that using matrix element taken from Ref. [5] (redline). Black line represents their ratio.

3. K± → π+π−e±ν(γ)

Following approximations explained in Ref. [11], neglecting diagrams with photons emis-
sion from hadronic or weak blocks, one can calculate the virtual photon corrections toKe4 decay
K±(p) → π+(q+)+ π−(q−)+e±(pe)+ ν(pν). Contribution of virtual diagrams reads

dΓvirt

dΓBorn
=

α
π

[

ln
m
λ

(

4+
L−

β−
−

L+

β+
−2ρ −

1+ β 2

β
Lβ +2ln

pe ·q+

pe ·q−

)

+π2 1+ β 2

2β
+ ρ2+

1
2

ρ +2ρ ln
m

2Ee
+Kv

]

, (3.1)

ρ = ln
2Ee

me
, β =

√

1−
4m2

sπ
, Lβ = ln

1+ β
1−β

,

sπ = (q+ +q−)2, β± =

√

1−
m2

E2
±

, L± = ln
1+ β±

1−β±
. (3.2)

wherem is the charged pion mass,λ is photon mass used as infrared regulator.Kv depends on
masses of particles and kinematics.

The soft photon contribution can be easily obtained by integrating out solid angle of photon
momentumk and over its energyω up to a limitω < ∆ε ,

dΓsoft

dΓBorn
=

α
π

[

ln

(

2∆ε
λ

)(

−4−
L−

β−
+

L+

β+
+2ρ +

1+ β 2

β
Lβ −2ln

2pe ·q+

2pe ·q−

)

+ ρ −ρ2+Ks

]

.(3.3)

FunctionKs is dependent on masses of particles and kinematics.
The contribution of soft and virtual photons can be easily combined. It reads

dΓBorn+virt+soft

dΓBorn
= 1+ σPδ +

πα(1+ β 2)

2β
+

α
π

Kvs,

Pδ = 2ln
∆ε
Ee

+
3
2
, σ =

α
2π

(2ρ −1), (3.4)

the expression ofKvs depends not only on masses of particles and kinematics, but also on soft
photon energy cutoff∆ε .

4



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
7
1

PHOTOS MC:γ∗ → π+π−(γ) and Ke4 decay Qingjun Xu

Photon emission frome± will give non negligible collinear contribution. This partcan be
calculated with the help of collinear-photon-approximation. The remaining part is calculated by
soft-photon-approximation. Finally hard (real) photon bremsstrahlung for photons of energy above
∆ε reads

dΓHard

dΓBorn
= −σPδ +

α
2π

(

3−
2
3

π2
)

+
α
π

ln

(

∆ε
Ee

)(

3+
L−

β−
−

L+

β+
−

1+ β 2

β
Lβ +2ln

2pe ·q+

2pe ·q−

)

. (3.5)

Real and virtual photons contribution is combined, it gives,

dΓBorn+virt+real

dΓBorn
= 1+

πα(1+ β 2)

2β
+

α
π

K. (3.6)

Complicated, but numerically small functionK is dependent on masses of particles and kinematics
of this process. Note that the result does not depend on the large logarithm ln2Ee

me
, and soft photon

energy cut∆ε .
As one can see, Eqs. (3.4),(3.5) and (3.6) are obtained with the help of approximations. Effec-

tively it was assumed that matrix element at Born level can bealways factorized out and photonic
corrections can be calculated independently. Further corrections are assumed to be negligible and
not affecting the nature of hard interaction. This may be good as starting point, but cannot be left
without future discussion/improvements1.

Our formulas are based on the same scheme of calculation as explained in Ref. [11] and in
principle they should coincide numerically. Some differences in both analytical and numerical
results are nonetheless present. The exact expressions forKs, Kv, Kvs andK, as well as differences
between our analytical results and these in Ref.[11] will not be listed here for the limit of paper
length. They will be present elsewhere.

Let’s switch our attention to numerical tests. In the left side of Fig. 3 we show that dominant
part of Eq.(3.6) represents Coulomb correction. The difference is much smaller than the effect of
Coulomb correction itself, see the right side of Fig.3 whereresults for 1000 000 Born level events
are placed in the histograms. We may conclude that our numerical implementation of Eq.(3.6)
works well since its dominant part represents Coulomb correction.

We have done numerical tests withPHOTOS and found the distribution for soft photons from
PHOTOS and from Eq.(3.3) is identical. We continued the test using hard photon expression Eq.
(3.5) and found again excellent agreement in the soft photonregion as expected. For harder photon
energy regionsPHOTOS and Eq.(3.5) remain in agreement (better than 10%) even at the end of the
spectrum. We can conclude that agreement of the hard photon expression withPHOTOS is good,
as expected. Though differences especially in harder photon energy ranges can be seen.

4. Summary

We have presented the new tests ofPHOTOS Monte Carlo, where the exact matrix element
of γ∗ → π+π−γ is implemented and its numerical result is compared with thekernel ofPHOTOS.

1We are grateful to Prof. J. Gasser for stressing this point.
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Figure 3: Coulomb correction from Ref. [8] (left, solid), radiative correction in Eq. (3.6) (left, dashed), and
the difference (right) calculated event by event

QED radiative correction to processK± → e±νπ+π−(γ) is also studied. Reasonable numerical
agreement of analytical results and simulations includingCoulomb correction andPHOTOSMonte
Carlo was found. Since several assumptions are employed in both approaches, further work is
necessary. Our result is of practical interest for experiments. They confirm that at least on technical
level the Monte Carlo program works well; as expected.
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