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analysis chain of particle physics experiments. We give a survey of the most popular methods that
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estimators in both contexts.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research,
ACAT2010
February 22-27, 2010
Jaipur, India

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:fru@hephy.oeaw.ac.at
mailto:are.strandlie@hig.no


P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
3

Track and vertex reconstruction Rudolf Frühwirth

1. Introduction

Track and vertex reconstruction are essential steps in the data analysis chain of high-energy
physics experiments. The performance of the algorithms is a crucial factor in quality of physics
analysis. Track and vertex reconstruction are also of growing importance for the trigger, both in
the first and in higher levels.

The task of track reconstruction is to determine the location, the direction and the (inverse)
momentum of charged tracks. The task of vertex reconstruction is to determine the location of an
interaction point and the momenta of the participating tracks. Track and vertex reconstruction have
many basic features in common.

Both track and vertex reconstruction usually proceed in three steps: track/vertex finding (pat-
tern recognition), track/vertex fitting (estimation), and track/vertex quality check (testing).

1. Pattern recognition. The assignment of the detector hits to the tracks is unknown a-priori
and has to be determined by a pattern recognition algorithm. The latter is usually highly
dependent on the detector and the shape of the magnetic field. In the case of vertex finding,
tracks are assigned to vertex candidates. This problem is nearly detector independent. The
performance of the pattern recognition is strongly influenced by the amount of background.
In the case of track finding, the background consists mainly of hits from low-momentum
tracks, secondary tracks, and pile-up tracks. In the case of vertex finding, the main source of
background is low-momentum tracks and pile-up tracks.

2. Estimation. The track fit estimates the track parameters at one or several points along the
track. This requires the following ingredients:

• The track model, i.e., the solution of the equation of motion of the charged particle in
the magnetic field. The solution can be analytical or numerical.

• The amount of material crossed by the particle. It can be obtained from the pattern
recognition stage.

• The covariance matrix of the observation errors. It has to be determined in the course
of the detector calibration.

• The effect of the material on the trajectory, mainly multiple scattering, bremsstrahlung
and energy loss by ionization. It can be computed to a good approximation from the-
ory [1].

The vertex fit estimates the position of the interaction vertex and updates the momenta of the
participating tracks. The necessary ingredients are:

• The track model. It is the same as in the track fit.

• The track parameters and their covariance matrices. They are provided by the track fit.

If the track parameters are sufficiently close to the vertex location, no material effects have
to be taken into account.
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From the mathematical point of view, the two estimation problems have a nearly identical
structure. Consequently, both estimation procedures can be formulated as extended Kalman
filters [2].

3. Testing. After the track fit, the quality of the track candidate is checked. Besides a test on
the χ2 statistic of the track, track length and the overlap with other tracks can be used to
assess the quality. If the quality is insufficient, one may try to improve it by identifying and
removing outliers. The quality check of vertex candidates proceeds along the same lines.

The approach outlined above, with its strict separation between pattern recognition and es-
timation, can be called the classical approach. Recently, the boundary has become more fuzzy.
In the adaptive approach, the pattern recognition is reduced to a preliminary selection of hits or
tracks. The final decision, which hits (tracks) are to be included in a track (vertex), is deferred to
the estimation stage. In some cases, the pattern recognition step can be dispensed with entirely.
Typically, an adaptive method gives soft associations of hits to tracks and of tracks to vertices, in
the form of posterior weights or probabilities. In the testing phase the final decision about which
hits (tracks) to retain can be based on these posterior weights.

A welcome side-effect of adaptive estimators is their robustness, i.e., the fact that they are
less sensitive to outliers than the classical least-squares estimators. As outliers are automatically
down-weighted, an explicit removal of outliers is often unnecessary.

2. Track finding

We can make a rough distinction between local or sequential methods on the one hand and
global or parallel methods on the other hand. A local method first generates small track segments,
called seeds, and then completes the seeds to full track candidates. In contrast, a global method
finds the track candidates simultaneously, by some sort of clustering algorithm.

2.1 Local methods

1. Track road. The algorithm starts with selecting two or three hits in the detector. From these,
it computes an approximative track plus a tolerance band around the track. Finally, it picks
up hits inside the tolerance band.

2. Track following. The algorithm starts with the construction of an initial track segment (seed)
from two or three hits. The seed is extrapolated, and matching hits are attached to the track
candidate. This is repeated until last detector layer.

The seed can be constructed at the outer edge of the tracking detector, where track density
is usually lower, or at the inner edge, where in many cases detector resolution and two-track
resolution is higher.

3. Progressive track finding. This is a statistically refined version of track following, i.e., an
extended Kalman filter [3, 4]. The algorithm starts with the construction of an initial track
segment (seed) from two or three hits. The seed is extrapolated, and the best matching hit
inside the tolerance is selected. The track parameters are updated with the information of
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Figure 1: An example of progressive track finding with three tracks. Out of the 27 seeds that are generated in
the innermost three layers, only three survive at the outermost detector layer. The blue dots are the detector
hits, the red lines are the seeds, and the green line are the found tracks.

this hit. This is repeated until last detector layer. An illustration of the procedure is shown in
Figure 1.

2.2 Global methods

1. Hough transform. The Hough transform [5] is a transformation from the image space to a
parameter space. A point (x0,y0) in the image space (x/y) is transformed into the straight
line d = y0− kx0 in parameter space (k/d). Points on the straight line y = k0x+d0 in image
space are transformed into lines intersecting in the point (k0/d0) in parameter space. If the
parameter space is discretized, intersections of lines can be found by histogramming and
subsequent peak finding. For circle finding, circles through the origin can be transformed to
lines by a conformal transformation [6].

Alternatively, a point (x0,y0) on a circle through the origin with center u/v is transformed
into the straight line

v =−x0

y0
u+

x2
0 + y2

0
2y0

in parameter space (u/v). Points on the circle with center u0/v0 in image space are trans-
formed into lines intersecting in the point (u0/v0) in parameter space. An example is shown
in Figure 2.

2. Legendre transform. The Legendre transform is a generalization of the Hough transform
and can be used for track finding in drift tubes [7]. The drift circles are transformed to sine
curves in polar coordinates. The intersections of several sine curves in the parameter space
correspond to common tangents to the drift circles. For an illustration, see Figure 3.
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Figure 2: Finding circles with the Hough transform. The colored points in image space (left) are transformed
into the corresponding colored lines in parameter space (right). The intersection of the lines in parameter
space gives the circle center in image space.

given by

Fake Rate ¼
Nfakes

Nsim

where Nfakes are the reconstructed segments that were not
matched to a simulated track (fake segments). The evaluation of
the track match introduces the need for a matching criterion.
A reconstructed line of the form y ¼ tan y1xþ b1 is matched to a

simulated line of the form y ¼ tan y2xþ b2 if

jy2 � y1jo0:01 rad and jb2 � b1jo0:1 mm

Single track events are generated for different noise parameters
and the reconstruction efficiency and fake rate are evaluated. The
algorithm is used in two different configurations with a threshold
of three and six drift circles per line, respectively. The results are
presented in Fig. 6. The Legendre algorithm shows very high
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Fig. 6. Reconstruction efficiency and fake rate of the algorithm as a function of the Noise level for two different threshold configurations.
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Fig. 7. Drift chamber with two multi-track events with noise level of 50% and 200%, for Events 1 and 2, respectively. Each one of the events were reconstructed using the
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to the reconstructed tracks shown on the left graphs.

T. Alexopoulos et al. / Nuclear Instruments and Methods in Physics Research A 592 (2008) 456–462 461

Figure 3: Track finding in drift tubes with the Legendre transform. From [7].

3. Hopfield network. Track finding with a Hopfield network can be considered as the first
adaptive approach to track reconstruction [8, 9, 10]. Short track segments are the neurons
of a recursive artificial neural network (ANN). The network weights are constructed such
that smooth tracks without bifurcations are favored. The energy function of the ANN is
minimized by gradient descent, and deterministic annealing helps to find global optimum.
Note that the weights do not use a physical track model. The initial and final state of a
network is shown in Figure 4

4. Elastic net. The elastic net is a special type of neural network, related to Traveling Salesman
Problem. The neurons are attracted to the detector hits and to each other [11]. An example
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Figure 4: Initial state (left) and final state (right) of a Hopfield network, using simulated tracks. From [10].

Figure 5: Example of the elastic net for a track with multiple scattering. From [11].

is shown in Figure 5. Elastic nets can also be used for ring finding in RICH detectors [12].

5. Cellular automaton. Track finding with a cellular automaton is described in [13, 14]. The
cells of the automaton are space points or track segments. The update rules of the automaton
are defined such that a sequence of cells is found that maximizes track length and track
smoothness.

3. Track fitting

3.1 Classical approach

Traditionally, after pattern recognition each track candidate is passed to a least-squares esti-
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mator. The estimator can be implemented in three different ways [15]: as a non-linear regression
model, as a breakpoint fit, and as a recursive estimator (extended Kalman filter). All three are
optimal in the linear case with normal noise.

1. Regression. The regression model is in general non-linear:

mmm = hhh(xxx)+ εεε, Cov[εεε] = VVV = GGG−1,

where mmm is the vector of all observations, xxx is the vector of initial track parameters, hhh is the
track model, εεε is the stochastic noise (measurement errors plus multiple scattering), and VVV is
its covariance matrix. The following objective function is minimized to obtain the estimate x̃xx:

M(xxx) = (mmm−hhh(xxx))TGGG(mmm−hhh(xxx)), x̃xx = argminM(xxx)

There is a large choice of minimization methods: Gauss-Newton, Newton-Raphson, conju-
gate gradients, and many others. The usual test statistics are the total χ2 = M(x̃xx), and the
standardized residuals (pulls).

2. Breakpoint fit. In the breakpoint fit the multiple scattering angles are estimated explicitly.
Prior information about multiple scattering angles is used:

E[ϑp] = 0, var[ϑp] = σ
2(m, p,d)

where ϑp is the projected scattering angle, m is the mass of the particle, p is the momentum
of the particle, and d is the thickness of the material at the breakpoint.

3. Kalman filter. The Kalman filter is a recursive least-squares estimator, so no large matrices
need to be inverted. The estimated state vectors stay close to the actual track. The track
is described as discrete dynamic system [2]. The evolution of the track is described by the
system equation:

xxxk = fff k(xxxk−1)+δδδ k, Cov[δδδ k] = QQQk,

where xxxk is the state vector (local track parameters) in layer k, fff k is the local track model,
and δδδ k is the local process noise (multiple scattering). The dependence of the observations
on the local state is described by the measurement equation:

mmmk = hhhk(xxxk)+ εεεk, Cov[εεεk] = VVVk,

where mmmk is the measurement in layer k, hhhk is the measurement model, and εεεk is the mea-
surement error.

The Kalman filter proceeds recursively by alternating two steps: prediction and update. In
the prediction step the state vector and its covariance matrix is propagated to the next layer,
and the covariance matrix is incremented by contributions from multiple scattering and en-
ergy loss. In the update step, weighted mean of the extrapolation and the observation is
computed. There is a local χ2 statistic, its number of degrees being equal to the dimension
of mmmk. The sum of the local χ2 statistics gives the total χ2 of the track. The prediction and
update (filter) step is illustrated in Figure 6.
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Figure 6: Prediction and filter step

The filter can be complemented by a smoother. The smoother computes optimal estimation
of the track state in each layer of the tracking detector. The smoother is best implemented
by combining two filters running forward and backward by a weighted mean. The smoother
gives an additional test statistic, the local χ2 of the smoother.

3.2 Adaptive approach

As a standard least-squares estimator the Kalman filter is sensitive to outliers, i.e., not robust.
As a consequence, it is difficult to identify multiple outliers, because each outlier biases the entire
track. A solution to this problem is the application of adaptive estimators. They have the following
advantages:

• Pattern recognition and estimation are performed concurrently. The final decision is deferred
to the fitting stage, where the complete information about the track is available.

• Adaptive estimators feature competition of observations. If several observations in a layer
are compatible with the track candidate, the estimator automatically selects the globally best
match.

• Adaptive estimators feature automatic suppression of background. This reduces the bias due
to outliers, and there is no need to remove or add hits during the fits.

• The assignment of hits to the track is “soft” during the entire fit. If required, the assignment
can be made “hard” after the optimal solution to the assignment problem has been found.
Finding the global optimum can be assisted by introducing deterministic annealing.

Adaptive estimators can be implemented in various ways. Among them are:

• Elastic arms, deformable templates: based on neural network paradigm [16];

• Elastic tracking: inspired by Radon transform [17];
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Figure 7: The combinatorial Kalman filter. From [18].

• Combinatorial Kalman filter: full discrete combinatorial exploration [18];

• Gaussian-sum filter: based on mixture models of measurement or process noise [19];

• Deterministic annealing filter: inspired by EM algorithm [20].

For reasons of space, we will not discuss elastic tracking and the Gaussian-sum filter; the reader is
referred to the literature.

The combinatorial Kalman filter is an extension of progressive track finding. Its defining
feature (and limitation) is a full combinatorial exploration. At each stage of the filter, several
candidates are propagated in parallel. For each candidate, a branch is generated for each compatible
hit, and optionally a branch with a missing hit. The growth of the candidates is limited by dropping
branches with bad total chi-square, branches with too many missing hits, and branches that are
subsets of other candidates. Upon reaching the last layer, the “best” branch is selected as the final
track. An example is shown in Figure 7.

The elastic arms or deformable templates algorithm can be considered as the first truly adap-
tive estimator. The arms or templates are parameterized tracks. The method computes the concur-
rent solution of two optimization problems. The first one is continuous: minimize a least-squares
objective function; the second one is discrete: decide which hit belongs to which template. The
discrete problem is transformed into a continuous one by deterministic annealing. The resulting
non-quadratic energy function is minimized at each temperature in the annealing schedule.

The deterministic annealing filter (DAF) is based on the same principle as the elastic arms
algorithm. Minimization is done, however, by the EM algorithm, implemented as an iterated re-
weighted Kalman filter. It is therefore easy to deal with the process noise (multiple scattering). A
weight is assigned to each observation. The DAF iterates two principal steps:

1. Full Kalman filter+smoother, using the current weights, and

2. calculation of weights, using the current estimates of the track parameters.

The iteration ends when the weights are stable. The weight of observation i in layer k is defined by:

pik =
exp(−χ2

ik/2T )
exp(−χ2

cut/2T )+∑ j exp(−χ2
jk/2T )

,
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Figure 8: Weight function of an observation without competition.
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Figure 9: An artificial data set with outliers. The distance between the inlier mean and the outlier mean is
equal to m = 5.

where χ2
ik measures the distance of observation i in layer k from the smoothed track state in layer k,

χ2
cut is the cut-off parameter, and T is the annealing factor (temperature). For a single observation

pik = 0.5 if χ2
ik = χ2

cut. If an observation has no competitor, its weight function has the form shown
in Figure 8.

The robustness of the adaptive estimator is illustrated by the following example. Figure 9
shows an artificial data set with outliers. The aim is to estimate the location of the inliers. The
evolution of the objective function is shown in Figure 10. At the starting temperature (T = 5) the
objective function is nearly quadratic, and the minimum is close to the sample mean including the
outliers. As the temperature is lowered, the objective function starts to reflect the structure of the
data. At the final temperature (T = 0.1), the estimate is very close to zero, the mean of the inliers.

If there are several observations in a detector layer, they may compete with each other, so
that a matching observation suppresses the other ones. Deterministic Annealing helps to reach the
globally optimal solution. At positive temperature the association of hits to the track is “soft”.
Cooling down to T = 0 yields “hard” association, but this is not necessarily optimal. The weight
function of an observation with competition is shown in Figure 11.
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Figure 10: Evolution of the objective function of the adaptive estimator. At each temperature, the circle (◦)
is the starting value of the estimate, and the cross (×) is the minimum of the objective function.
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Figure 11: Weight function of an observation with competition. The competitor is at one standard deviation
from the track.

The DAF was evaluated in the CMS experiment in different physics contexts [21] and imple-
mented in the reconstruction software of CMS and ATLAS. A study dedicated to the track finding
capabilities of the DAF can be found in [22].

4. Vertex reconstruction

4.1 Vertex finding

Vertex finding can be accomplished by many different types of algorithms. A few of them are:

• Hierarchical clustering of the agglomerative or divisive type;
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• Topological vertex finding, similar to a Radon transform [23];

• Minimum spanning tree [24];

• Multi-layer perceptron [25];

• Adaptive vertex reconstructor (see below).

4.2 Vertex estimation

Least-square estimation of the vertex position can be performed via a non-linear regression
model or, alternatively, by an extended Kalman filter. As the basics of track and vertex estimation
are very similar, the concept of adaptive estimation can be transferred almost one-to-one from
track to vertex fitting. The resulting algorithm is called the Adaptive Vertex Fitter (AVF, [26]). In
analogy to the DAF, it is implemented as iterated re-weighted Kalman filter. As outlying tracks are
automatically down-weighted, the resulting estimator is highly robust, but much easier to compute
than other robust estimators such as least median of squares (LMS) or least trimmed squares (LTS).
The adaptive vertex fitter can be extended to a Multi-Vertex Fitter (MVF), in which several vertices
compete for the available tracks.

The AVF can also be used for concurrent vertex finding and vertex fitting. The algorithm is
called the Adaptive Vertex Reconstructor (AVR, [27]). Vertices are found by iterating the AVF:

• Fit all tracks to a common vertex, using the AVF

• Remove all tracks with weight above threshold

• Fit all remaining tracks to a common vertex, using the AVF

• Repeat until no valid vertex can be fitted

The AVF has been implemented and successfully validated in the CMS offline software. All CMS
algorithms (KF, AVF, AVR, . . . ) have been packed into a detector-independent vertex reconstruc-
tion toolkit called RAVE [28]. It has been used in the new Belle II framework as well as for ILC
studies (ILD, SiLC).

5. Conclusions and Outlook

Adaptive estimators are useful tools for track and vertex reconstruction. For a detailed expo-
sition and experimental results the reader is referred to a recent review [29]. Adaptive estimators
have several advantages over conventional least-squares estimators:

• Background is automatically down-weighted. There is no need for iterative rejection of
outliers.

• Competition between hits or vertices is possible.

• Deterministic annealing helps to reach the globally optimal solution of the hits-to-track or
track-to-vertices assignment problem.
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• Implementations can be built on existing methods such as the Kalman filter.

• Adaptive estimators are resistant to high levels of noise. This is important for future experi-
ments at the Super-LHC and at the upgraded B-factory at KEK.

Because of their iterative nature, adaptive estimators are intrinsically slower than least-squares
estimators. On the other hand, their deployment can be restricted to particularly difficult cases
such as narrow jets or detector regions with high background. In addition, there is important work
on parallelization of track reconstruction going on [30, 31]. It should be investigated how far
adaptive estimators can profit from these developments.
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