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Lattice QCD simulations Karl Jansen

In nature, we observe three generations of neutrinos as demonstrated by LEP. Correspond-
ingly, there should exist 3 generations of quarks, ordered in quark pairs as (up,down), (strange,
charm), (bottom,top). The masses of these quarks show a particular hierarchy with essentially
mass-degenerate up and down quarks and basically exponentially increasing mass values from the
strange to the top quark.

We strongly believe nowadays that the quarks are the constituents of all hadrons with the
gluons being the interaction particles that –via the stronginteraction– “glue” the quarks together to
form the bound hadron states which are the particles observed in experiments. The mechanism of
forming the bound states is theoretically described by quantum chromodynamics. The postulation
of QCD is that at very short distances the quarks behave as almost free particles that interact only
very weakly, a phenomenon we call asymptotic freedom. At large distances, at the order of 1fm,
the quarks interact extremely strong and in fact so strong that they will never be seen as final,
observable states but rather form the observed hadron boundspectrum. The latter phenomenon is
called confinement of quarks.

Since the interaction between quarks become so strong at large distances, analytical methods
such as perturbation theory fail to analyze QCD. A method to nevertheless tackle the problem is to
formulate QCD on a 4-dimensional, euclidean space-time grid. This setup first of all allows for a
rigorous definition of QCD and leads to fundamental theoretical and conceptual investigations. On
the other hand, the lattice approach enables theorists to perform large scale numerical simulations.
In this contribution, we will describe one approach to “lattice QCD”, the twisted mass formulation.

In the past, lattice physicists had to work with a number of limitations when performing nu-
merical simulations. These simulations are extremely expensive, reaching the need for Petaflop
computing and even beyond, a regime of computing power we just reach today. Therefore, for a
long time the quarks were treated as infinitely heavy, indeeda crude approximation given that the
up and down quarks have masses of only O(MeV). In a next step, only the lightest quark doublet,
the up and down quarks, were taken into consideration, although their mass values as used in the
simulation had been unphysically large.

Nowadays, besides the up and down quarks, also the strange quark is included in the simula-
tions. In addition, these simulations are performed in almost physical conditions, having the quark
masses close to their physical values, large lattices with about 3fm linear extent and small values
of the lattice spacing such that a controlled continuum limit can be performed. The situation of the
change of the simulation landscape is illustrated in fig. 1(a). In the figure, the blue dot indicates
the physical point. The black cross represents a state of theart simulation in the year 2001. As can
be seen in the graph, most of the simulations now go well beyond what could be reached in 2001
demonstrating clearly the progress in performing realistic simulations.

The drastic change in the situation is due to three main developments:i) algorithmic break-
throughs; ii) machine development; the computing power of the present BG/P systems is even
outperforming Moore’s law,iii) conceptual developments, such as the use of improved actions
which reduce lattice artefacts and the development of non-perturbative renormalization.

As a physical example of results we can achieve presently, weshow in fig. 1(b) the continuum
extrapolated strange baryon spectrum as obtained by the BMWcollaboration [28] and the European
Twisted Mass Collaboration (ETMC) [1] of which the author isa member. ETMC comprises 16
institutions in Europe, i.e. Cyprus (Univ. of Cyprus), France (Univ. of Paris Sud and LPSC Greno-
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Figure 1: (a) The values of the lattice spacinga and pseudo scalar massesmPS as employed presently in typical QCD
simulations by various collaborations as (incompletely) listed in the legend. The blue dot indicates the physical point
where in the continuum the pseudo scalar meson assumes its experimentally measured value. The black cross represents
a state of the art simulation by the JLQCD collaboration in 2001. (b) The continuum strange baryon spectrum from the
ETM collaboration [1] usingN f = 2 and the BMW collaborations [28] usingN f = 2+1 flavours of quarks.

ble), Germany (Humboldt Univ. zu Berlin, Univ. of Münster, DESY in Hamburg and Zeuthen),
Great Britain (Univ. of Glasgow and Univ. of Liverpool), Italy (Univ. of Rome I, II and III, ECT*
Trento), Netherlands (Univ. of Groningen), Poland, (Univ.of Poznan), Spain (Univ. of Valencia),
Switzerland (Univ. of Bern).

The baryon spectrum calculation has been considered a benchmark study for lattice QCD for a
long time. It is therefore very reassuring that finally this important result can be obtained precisely
from ab-initio and non-perturbative lattice simulations.

1. Twisted mass fermions

Twisted mass fermions [3, 4] belong to the class of Wilson fermions [2]. In this approach the
lattice artefacts in physical observables appear only quadratic in the lattice spacing when the theory
is tuned to the so-called maximal twist situation, see below. This is in contrast to a standard Wilson
action, where these lattice spacing effects are linear. Themain advantage of the twisted mass
formulation of lattice QCD is then that these kind of fermions provide an improved, i.e.O(a2),
continuum limit scaling of physical observables. The twisted mass formulation of Lattice QCD
[3, 4] is being studied extensively withN f = 2 dynamical flavours, i.e. including only the lightest
up and down quark doublet [8] as well by including a dynamicalstrange and charm quark degree
of freedom (N f = 2+1+1) [19, 26, 27] by the European Twisted Mass collaboration.

The fermionic action for two flavours of twisted, mass degenerate quarks in the so called
twisted basis [3, 9] reads

Stm = a4∑
x

{

χ̄(x)
[

D[U ]+ m0+ iµqγ5τ3]χ(x)
}

, (1.1)
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wherem0 is the untwisted bare quark mass,µq is the bare twisted quark mass,τ3 is the third Pauli
matrix acting in flavour space and

D[U ] =
1
2

[

γµ
(

∇µ + ∇∗
µ
)

−a∇∗
µ∇µ

]

is the mass-less Wilson-Dirac operator.∇µ and∇∗
µ are the forward and backward gauge covariant

difference operators, respectively. Twisted mass fermions are said to be atmaximal twist if the bare
untwisted quark massm0 is tuned to its critical valuemcrit, the situation we shall be interested in.
For convenience we define the hopping parameterκ = 1/(8+2am0).

Maximally twisted mass fermions provide important advantages: the spectrum ofQ†Q with
Q = γ5(D[U ] + m0 + iµqγ5) is bounded from below, which was the original reason to consider
twisted mass fermions [3]. At maximal twist, the twisted quark massµq is related directly to the
physical quark mass and renormalises multiplicatively only. Many mixings under renormalisation
are expected to be simplified [9, 4]. And, physical observables are automaticallyO(a) improved.
Another feature of maximally twisted mass fermions is that the pseudo scalar decay constantfPS

does not need any renormalisation which allows for a very precise determination of this quantity.
The main drawback of maximally twisted mass fermions is thatboth parity and flavour sym-

metry are broken explicitly at non-zero values of the lattice spacing. However, it turns out that this
is most probably only relevant for the mass of the neutral pseudo scalar meson (and kinematically
related quantities) [10].

2. Results for two flavours of mass-degenerate quarks

Since in the maximal twist situation the theory isO(a)-improved, leading lattice artefacts are
expected to be of ordera2. This can be checked by extrapolating a physical quantity inunits of the
force parameter [11]rχ

0 extrapolated to the chiral limit at fixed physical situationto the continuum
limit. We show two such examples in figure 2. In the left panel we showrχ

0 fPS as a function of
(a/rχ

0 )2 at fixed value ofrχ
0 mPS. In order to match the values ofrχ

0 mPS at each value ofrχ
0 /a and

to fix the volume torχ
0 ·L = 5 we had to perform short inter- or extra-polations. The straight lines

are linear fits in
(

a/rχ
0

)2
to the corresponding data, with the data at the largest valueof the lattice

spacing not being included in the fit. It is clearly visible that the lattice artefacts appear to scale
linearly in a2 and that their overall size is small.

In the right panel of figure 2 we show the scaling ofrχ
0 mPS as a function of(a/rχ

0 )2 at fixed
values of the renormalised quark massrχ

0 µR, again at fixed, finite volume. We conclude that also
the charged pseudo scalar mass has only small lattice artefacts.

The dependence ofmPS and fPS on the renormalised quark mass and volume can be described
by chiral perturbation theory (χPT) [13, 14]. The residual lattice artefacts of ordera2 can also be
included in the analysis. The corresponding formulae can befound in Ref. [15, 8]. We fit these
formulae to our data in order to extract the parameters of theN f = 2 chiral Lagrangian, i.e. the
low energy constants and some derived quantities. Moreover, we can use these fits to calibrate our
lattices by determining the value of the renormalised quarkmassrχ

0 µR where the ratiomPS/ fPS

assumes its physical value (i.e.mπ/ fπ ) and setfPS= fπ = 130.7MeV there, as done in ref. [5].
Hence,fπ is used in this paper to set the scale.
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Figure 2: Scaling in finite, fixed volume forrχ
0 fPSat fixed values ofrχ

0 mPS (a) and for(rχ
0 mPS)

2 at fixed values ofrχ
0 µR

(b). In (b) we cannot include data atβ = 4.2 due to the missing value of the renormalisation factorZP.

Quantity median statistical systematic

mup,down [MeV] 3.54 (19) (+16−17)
ℓ̄3 3.50 (9) (+9−30)
ℓ̄4 4.66 (4) (+4−33)
f0 [MeV] 121.5 (0.1) (+1.1−0.1)

r0 [fm] 0.420 (9) (+10−11)
|Σ|1/3 [MeV] 270 (5) (+3−4)

fπ/ f0 1.0755 (6) (+8−94)

Table 1: Summary of fit results, determined from the weighted distribution of a number ofO(80) different fits. The first
error is of statistical origin while the second, the asymmetric one, accounts for the systematic uncertainties.Σ andmu,d

are renormalised in theMS scheme at the renormalisation scaleµ = 2GeV, as the values ofZP are in theMS scheme at
scale 2GeV. The scale is set byfπ = 130.7MeV.

The results of these fits can be found in table 2. We give statistical and systematic errors
separately, the systematic one being asymmetrical. The results are obtained by performingO(80)
fits, which differ in fit-range, finite size correction formulae and in the order ofχPT. The final result
is obtained as the median of the corresponding weighted distribution over all fits. The statistical
error is determined using the bootstrap method with 1000 samples. The systematic uncertainty is
estimated from the 68% confidence interval of the weighted distribution. For details see Ref. [8].
The fit results for the determination of physical quantitiesand the low energy constants listed in
table 2 belong to the most precise determination of their kind world-wide.

3. Results adding dynamical strange and charm quarks

The very nice results for mass degenerate quarks discussed in the last section motivates to go
one step beyond this setup. The ETM collaboration has by now included the strange and the charm
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degrees of freedom in their simulations and they are the firstcollaboration to perform such studies.
We introduce a dynamical strange quark by adding a twisted heavy mass-split doubletχh =

(χc,χs), thus also introducing a dynamical charm in our framework. As shown in [18], a real quark
determinant can in this case be obtained if the mass splitting is taken to be orthogonal in isospin
space to the twist direction. We thus choose the construction [4, 18]

Sh = a4∑
x
{χ̄h(x) [D[U ]+ m0,h + iµσ γ5τ1 + µδ τ3]χh(x)} , (3.1)

wherem0,h is the untwisted bare quark mass for the heavy doublet,µσ the bare twisted mass – the
twist is this time along theτ1 direction – andµδ the mass splitting along theτ3 direction.

The bare mass parametersµσ andµδ of the non-degenerate heavy doublet are related to the
physical renormalised strange and charm quark masses via [4]

(ms)R = Z−1
P (µσ −ZP/ZSµδ ) ,

(mc)R = Z−1
P (µσ + ZP/ZSµδ ) , (3.2)

whereZP andZS are the renormalisation constants of the pseudoscalar and scalar quark densities,
respectively, computed in the massless standard Wilson theory. In order to tune to maximal twist,
we will use a rather economical, while accurate method [9, 18, 19], where the choiceam0,l =

am0,h ≡ 1/2κ −4 is made.
Tuning to maximal twist, i.e.κ = κcrit , is then achieved in the same way as for theN f = 2

case discussed above by demanding that the PCAC mass vanishes atκcrit . For the quenched [25]
and, as seen above, theNf = 2 case [8], this method has been found to be successful in providing
the expectedO(a) improvement and effectively reducing residualO(a2) discretisation effects in
the region of small quark masses [24].

3.1 Results: fPS, mPS and Chiral Fits

We concentrate in this section on the analysis of the simplest and phenomenologically relevant
observables involving up and down valence quarks. These arethe light charged pseudoscalar decay
constantfPS and the light charged pseudoscalar massmPS.

The present simulations with dynamical strange and charm quarks, sitting at, or varying
around, their nature given masses, should allow for a good measure of the impact of strange and
charm dynamics on the low energy sector of QCD and the electroweak matrix elements. As a first
step, one can determine the low energy constants of chiral perturbation theory (χPT). In contrast
to standard Wilson fermions, an exact lattice Ward identityfor maximally twisted mass fermions
allows for extracting the charged pseudoscalar decay constant fPS from the relation

fPS=
2µl

m2
PS

|〈0|P1
l (0)|π〉| , (3.3)

without need to specify any renormalisation factor, sinceZP = 1/Zµ [3]. We have performed fits to
NLO SU(2) continuumχPT atβ = 1.95 andβ = 1.90, separately and combined.

We thus simultaneously fit our data for the pseudoscalar massand decay constant to the follow-
ing formulae, where the contributionsF, D andT parametrise finite size corrections, discretisation
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effects and NNLOχPT effects, respectively, below:

m2
PS(L) = χµ

(

1+ ξ l3 + Dm2
PS

a2 + ξ 2Tm2
PS

)

Fm2
PS

fPS(L) = f0
(

1−2ξ l4 + D fPSa
2 + ξ 2TfPS

)

FfPS, (3.4)

with the pseudoscalar mass squared at tree level defined asχµ ≡ 2B0 µl and the chiral expansion
parameter byξ ≡ χµ/(4π f0)

2.
Systematic errors can arise from several sources: finite volume effects, neglecting of higher

orders inχPT and finite lattice spacing effects. These different corrections are accounted for ex-
plicitly in eq. (3.4). Finite volume corrections are described by the rescaling factors denoted by
Fm2

PS
andFfPS, computed in the continuum theory. Notice that the discretisation effects present in

the neutral pion mass, can generate peculiar finite volume corrections which have been recently
analysed in ref. [23]. Here we use, however, the resummed expressions derived by Colangelo, Dürr
and Haefeli (CDH) in [15] which describe the finite volume effects in our simulations very well.

Because of the automaticO(a) improvement of the twisted mass action at maximal twist,
the leading order discretisation artefacts in the chiral formulae of (3.4) are at least ofO(a2), and
O(a2µ) for m2

PS. The regime of quark masses and lattice spacings at which we have performed the
simulations is such thatµl & aΛ2

QCD. In the associated power counting, at maximal twist, the NLO
tmχPT expressions for the charged pion mass and decay constant preserve their continuum form.
The inclusion of the terms proportional toDm2

PS, fPS
, parametrising the lattice artifacts in eq. (3.4),

represents an effective way of including sub-leading discretisation effects appearing at NNLO.
To set the scale at each lattice spacing, we determineaµphys, the value ofaµl at which the

ratio
√

m2
PS(L = ∞)/ fPS(L = ∞) assumes its physical value. We can then use the value offPS, or

equivalentlymPS, to calculate the lattice spacinga in fm from the corresponding physical value. We
also perform a chiral fit combining two different lattice spacings. With only two different values of
β , that are in fact fairly close to each other, a proper continuum limit analysis cannot be performed.
Instead, we treat this combined fit as a check on the presence of lattice artefacts and the overall
consistency of the data.

In order to estimate the statistical errors affecting our fitted parameters, we generate at each of
theµl values 1000 bootstrap samples formPSand fPSextracted from the bare correlators, organised
by blocks. For each sample, and combining all masses, we fitm2

PS and fPS simultaneously as a
function of µl . The parameter set from each of these fits is then a separate bootstrap sample for
the purposes of determining the error on our fit results. By resampling fPS and mPS on a per-
configuration basis, correlations between these quantities are taken into account.

We show our final fits in fig. 3 and summarize the results in table2. The predictions for̄l3
and l̄4 are in good agreement and with our two-flavour predictions [8] and with other recent lattice
determinations [22, 21].

An interesting question in the situation with a dynamical strange and charm degree of freedom
is the tuning of the mass parametersµσ and µδ in the heavy doublet of the action in eq. (3.1).
In this work, we fix the values ofµσ and µδ by requiring that the simulated kaon massmK and
D meson massmD approximately take their physical values. Fig. 4 shows the quality of such a
tuning. For the rather involved extraction of the kaon massmK and the D-meson massmD we refer
to ref. [27]. As can be seen, atβ = 1.95 we indeed succeeded to tune the mass parameters correctly
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(a) (b)

Figure 3: (a) The charged pseudoscalar mass ratiom2
PS/(2B0µl) and (b) the pseudoscalar decay constantfPS as a

function of 2B0µl fitted to SU(2) chiral perturbation theory. The scale is set by the value of 2B0µl at which the ratio

f [L=∞]
PS /m[L=∞]

PS assumes its physical value [16] (black star). The lattice gauge coupling isβ = 1.95 and the twisted
light quark mass ranges fromaµl = 0.0025 to 0.0085 corresponding to a range of the pseudoscalar mass 270. mPS.

490 MeV. The kaon andD meson masses are tuned to their physical value. The lightestpoint (open symbol) has not
been included in the chiral fit.

β = 1.95

l̄3 3.70(7)(26)
l̄4 4.67(3)(10)
f0 [MeV] 121.14(8)(19)
〈r2〉NLO

s [fm2] 0.724(5)(23)

a(β = 1.95) [fm] 0.0782(6)

Table 2: Results of the fits to SU(2)χPT for the ensemble atβ = 1.95. Predicted quantities are: the low energy constants
l̄3,4, the charged pseudoscalar decay constant in the chiral limit f0 and the pion scalar radius〈r2〉NLO

s . The first quoted
error is from the chiral fit atβ = 1.95, the second error is the systematic uncertainty.

while atβ = 1.9 we are missing the physical value of the kaon mass which necessitates a retuning.
We have performed such a retuning successfully as demonstrated by the corresponding data point
in fig. 4(a).

Conclusion

In this contribution we have discussed a particular formulation of lattice QCD, maximally
twisted mass fermions. We have shown that with thisO(a)-improved action precise results in the
light meson and the strange baryon sector can be obtained. Inthe course of this investigation, it has
been demonstrated that twisted mass fermions at maximal twisted indeed scale witha2 towards the
continuum limit and that even these remaininga2 corrections are very small giving rise to a well
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(a) (b)

Figure 4: (a): 2m2
K −m2

PS, and (b):mD, as a function ofm2
PS, for β = 1.95 (blue) andβ = 1.90 (orange). The physical

point is shown (black star). The kaon andD meson masses appear to be properly tuned atβ = 1.95. The ensembles
at β = 1.90, µδ = 0.190 have a larger value of the strange quark mass, while the red point atβ = 1.90, aµδ = 0.197
appears to be well tuned. Data points have been scaled with the lattice spacinga = 0.08585(53) fm for β = 1.90, and
a = 0.07820(59) fm for β = 1.95, obtained in this work and where the errors are only statistical.

controlled continuum limit extrapolation of lattice results. Fitting the data forfπ andmπ it became
possible to extract a number of physical quantities and low energy constants of chiral perturbation
theory very precisely, see table 2.

Encouraged by these results, we have described first simulations for the situation when a dy-
namical strange and charm quark are included. We have demonstrated that it is possible to tune to
physicalK- andD-meson masses. In addition the good agreement of theN f = 2 andN f = 2+1+1
simulations, visible when comparing the values for the low energy constantsf0, l̄3 andl̄4 with those
of table 2 indicates that also for the latter case lattice artefacts, at least in the light meson sector, are
small. This offers the promising possibility to obtain precise physical results also with dynamical
up, down, strange and charm simulations for the first time.
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