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Dynamic virtual organization clusters with user-supplied virtual machines (VMs) have advan-
tages over generic computing environments. These advantages include the ability for the user to
have a priori knowledge of the scientific tools and libraries available to programs executing in the
virtualized environment as well as the other details of the environment. The user can also perform
small-scale testing locally, thus saving time and conserving computational resources. However,
user-supplied VMs require contextualization in order to operate properly in a given cluster envi-
ronment. Two types of contextualization are necessary: image-level and instance-level. Examples
of image-level contextualization include one-time configuration tasks such as ensuring availabil-
ity of ephemeral storage, mounting of a cluster-provided shared filesystem, and integration with
the cluster’s batch scheduler. Also necessary is instance-level contextualization such as the as-
signment of MAC and IP addresses. This paper discusses the challenges and techniques used to
overcome those challenges in the contextualization of the STAR VM for use with the Clemson
University cluster environment that is exposed to OSG. Also included are suggestions to VM
authors to allow for efficient contextualization of their VMs and recommendations for future vir-
tualized grids.
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1. Introduction

As cloud computing and virtual machines (VMs) become more popular, there is great interest
in adapting their use to the many tasks of computational science. However, due to a proliferation
of virtualization technologies, a given VM disk image cannot be necessarily used with any given
hypervisor. Also, a VM image that must integrate with pre-existing infrastructure must be further
modified. This process is known as contextualization [7].

The Virtual Organization Cluster (VOC) model has been developed by the Cyberinfrastructure
Research Group at Clemson University in an attempt to ameliorate these concerns. The VOC model
provides a framework for developing virtual clusters that seamlessly integrate with existing grid and
cloud computing technologies. This integration requires sound principles for contextualization as
well as procedures that are guided by those principles. This work seeks to document both.

Central to the VOC model is the idea that a Virtual Organization (VO) is able to provide a
customized VM image to the VOC provider. In order to validate this aspect of the VOC model, a
real VM image should be deployed on a testbed cluster and a realistic workload run. The STAR
VO has long been a proponent of leveraging virtualization in grid computing environments, and
since 2007 has worked with the Open Science Grid [1] to investigate the integration of VMs into
grid sites. In light of the STAR VO’s virtualization expertise and need, it provided the VM image
and workload used for this validation experiment [8].

The remainder of this work is organized as follows: the VOC model is discussed in Sec-
tion 2, contextualization principles and recommendations for packaging VMs according to those
principles are presented in Section 3, the procedure followed in contextualizing the STAR VM is
described in Section 4, the results of testing performed on that image can be found in Section 5,
and conclusions are presented in Section 6.

2. Virtual Organization Clusters

Virtual Organization Clusters (VOCs), first put forward in [9] and illustrated in Figure 1, are
a cloud-computing construct that enable the creation of virtual environments. These environments
have the properties of being compatible across physical sites, deployable without per-hypervisor
node replication of images, transparent to end users, able to be implemented in a non-destructive
manner, and customizable by a Virtual Organization. VOCs are made of virtual machines (VMs)
spawned from a single image, and thus their worker nodes are trivially homogeneous. If a grid
site uses a distributed filesystem such as PVFS [4], VOCs are booted directly from that filesystem,
without the need to copy the image to each node. VOCs are transparent because a site appears and
is presented as having a normal grid interface to the end user.

A key provision of the VOC model is its separation into two administrative domains, the Vir-
tual Administrative Domain (VAD) and the Physical Administrative Domain (PAD). Each physical
site on the grid is a unique PAD containing all hardware, infrastructure, and systems software. Each
VOC is a distinct VAD that is managed by the VO. This distinction between PAD and VAD allows
each VO to have its own customized, virtualized environment.

Jobs are submitted to the VOC through a dedicated head node. This head node contains a
standard installation of the Open Science Grid (OSG) Compute Element software stack. Thus
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Figure 1: A Virtual Organization Cluster, consisting of a set of virtual machines (VOC nodes) instantiated
from a single image file and running on a set of hypervisor-equipped compute nodes.

the VOC appears to the user as a normal site on the grid. A VOC component monitors the job
queue on the head node and autonomically starts and stops VMs in response to load. VMs must
be contextualized both at boot-time and when the image is received by the VOC via standard grid
mechanisms. Boot-time contextualization is defined in the VOC model as the leasing of certain
resources from the PAD to the VAD.

As mentioned above, VOCs are autonomically scaled without the user having to make explicit
reservation requests [11]. This scaling is accomplished via a daemon that monitors the workload
and takes appropriate action. When the daemon detects an increase in job queue length, it interprets
this as an increase in the demand for computational resources. The daemon will thus seek to meet
the demand by instantiating a new VM from the appropriate VO-specific image. These VMs then
join the batch scheduling pool and appear to the user as normal compute nodes. Similar steps are
taken when the daemon detects a decrease in demand. The daemon attempts to slowly increase and
decrease the number of VMs in order to avoid inefficiencies due to a non-zero VM boot time. It is
important to note that each VM utilizes QEMU’s snapshot mode, in which writes are directed to
a local copy-on-write image. These copy-on-write images store the differences from a base image
that is itself stored on a network filesystem. The base image does not need to be copied to each
hypervisor node before VM instantiation.

3. Contextualization Principles

The topic of VM contextualization merits further discussion. It is a safe assumption that any
given VM image will not successfully integrate into a VOC as implemented at any given site. This
is due to a variety of factors, including but not limited to: the need to mount any eternal filesys-
tems, the need to acquire an IP address (be it via DHCP or some overlay networking mechanism),
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the need to handshake with a batch system, and the need to define any grid-specific environment
variables. Thus, the image must be contextualized in two phases: image-level and instance-level.
Image-level contextualization occurs once per VM disk image per site. Instance-level contextual-
ization occurs once per VM instance.

3.1 Image-level contextualization

Important considerations for image-level contextualization are image format, image layout,
shared filesystem support, and batch scheduler integration. Image format refers to the representa-
tion of the disk’s data within the image file. Image layout refers to how the various partitions are
placed on the disk and to what other disk structures are present.

The simplest image format is that of the raw disk image. A raw image is simply a file contain-
ing the exact byte string that would appear on a physical device. This format is highly compatible
but is not space efficient because the image file’s size must be equal to the capacity of the virtual
device being represented. Note that raw images compress very well with gzip compression, so they
are fairly easy to distribute. In order to mitigate the in-use size issue, there has been a proliferation
of virtual image formats such as VMDK, VDI, VHD, and QCOW2. These formats vary in imple-
mentation and hypervisor support, but they all allow the compact representation of a disk image.
When utilizing one of these formats, the size of the image is determined by the size of the actual
data present on the device, instead of being determined by the capacity of the device. In order to
contextualize the VM image format, the image must simply be converted to a format that is com-
patible with the hypervisor used at a given site. The qemu-img [2] tool provides functionality
that can convert images between many of the popular formats, thus freeing the user from reliance
on any particular hypervisor image format. Hypervisor vendors also generally provide a tool that
can convert between their format and the raw format.

The image layout issue can become much more involved. The two main image layouts are the
partition image layout and the disk image layout. A partition image contains a representation of
a single disk partition. Essentially, this layout could be referred to as a filesystem image, since a
partition does not contain any metadata with regard to itself. This layout requires a hypervisor that
is able to present individual partitions to a guest OS. Currently, only the Xen hypervisor is capable
of this. The disk image layout contains a representation of an entire disk, including the master boot
record, boot sector, and partition table. All hypervisors, including KVM, are capable of utilizing
this type of image. Since Xen requires the guest kernel and initial ramdisk to be located outside
of the VM image, Xen may only boot from disk images when it is used in conjunction with the
pygrub utility. This utility mounts the disk image and extracts the kernel and initial ramdisk from
the image, and as such, can only be utilized with a disk in the raw disk format. There is no set
procedure for converting between partition images and disk images. Images will generally need
to be converted (at least temporarily) to the raw format in order to allow standard disk tools to be
utilized. There are, however, several useful tools and one guiding principle. The principle is: a
disk image is the same as a physical disk, and a partition image is the same as a physical partition.
Converting between image formats is a matter of getting the correct disk structures into the correct
places. Useful tools include:
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• fdisk, allows the calculation of partition extents and the creation/modification of partition
tables,

• dd, allows block level copying of defined sections of an image,

• mount, when used with the -o loop option allows a partition image to be mounted,

• kpartx, allows the exposure of the partitions of a disk image as individual devices,

• chroot, allows the running of the native tools present in the image if necessary.

These tools, along with the bootloader installer, should be sufficient to assemble a disk image from
a set of partition image or decompose a disk image into a set of partition images.

Grid systems have specifications that the compute nodes must adhere to. These specifica-
tions generally require that various filesystems be shared among the compute element (CE) and
its associated worker nodes. Thus, the image must be contextualized so that it properly mounts
those filesystems. In particular, any software libraries needed to mount the site’s shared filesystem
must be installed and the grid-provided application, user-provided application, and user data shares
must the mounted at the locations defined by the CE configuration. One such specification is that
of the Open Science Grid which perscribed the definition of the $OSG_GRID, $OSG_APP, and
$OSG_DATA environment variables.

There must also be a way to get computational jobs into the VM. Either the site’s batch sched-
uler or a VO-level scheduling system must be installed into the VM image. If the site’s batch
scheduler is installed, it is prudent to configure the scheduling system in such a way that the VM’s
scheduling pool may be partitioned off from the site’s general scheduling pool in order to satisfy
the constraints of the VOC Model. If a VO-level scheduler is installed, some provision must be
made for crossing NAT boundaries.

3.2 Instance-level contextualization

Whereas image-level contextualization can be performed manually by a systems administrator,
instance-level contextualization occurs once per VM instantiation and as such must be automated.
As described in Section 2, certain resources must be leased from the physical site. These resources
include network addresses, disk space, and scheduler slots.

Network addresses, including both MAC and IP addresses, should be assigned (leased) to the
VMs in such a way as to avoid conflicts. Leasing of MAC addresses must be performed by the
hypervisor. Leasing of IP addresses may be performed by the hypervisor if it is capable of passing
this information to the guest (e.g. Xen) or may be through the standard DHCP protocol. One
such method of assignment is to implement a central leasing server. Before VM instantiation, the
hypervisor node would contact a central service and made a lease request for a MAC or IP address.
The service would then maintain a lease database in order to avoid duplication. Since MAC and IP
addresses will be unique to a hypervisor node, that node may also use a function to map its address
to that of the VM. As long as this function will not cause an overlap in addresses, this method
satisfies the uniqueness constraint without the requirement of a centralized service.

If the VOC nodes are not spawned from a single image, some allocation of disk space must
be made to the hypervisor. This could use hypervisor’s local disk, but care must be taken to avoid
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exceeding the disk’s capacity, especially when dynamically resizing disk image formats are used.
Another solution would be to map LUNs of a storage area network to the hypervisor node.

If the scheduling system requires the use of fixed slots for compute nodes, then these must
also be assigned [12]. Techniques described for leasing network addresses can be easily extended
to provide for such a scheduler.

3.3 Best Practices for VOs

In light of the above discussion, some best practices emerge for VO’s that wish to provide
a VM. In short, VO’s should use disk image layouts in the raw format that either join a global
scheduling pool or utilize a common operating system distribution. This advice is expanded upon
below.

It is best to provide the VM as a disk image layout in the raw format. The disk image layout is
compatible with all hypervisors (although Xen requires the pygrub utility) whereas the partition
image is only natively compatible with Xen. Substantial administrator effort is required to convert
between partition and disk layouts. Similarly, the raw format is preferred due to its broad compati-
bility. Sites may choose to use the raw image directly, or to convert it to their preferred format. It is
however, necessary to compress raw images for transport between sites. It has been observed that
raw images compress very well, generally to the size of the actual data.

Two approaches emerge to mitigate the administrator effort needed to install a compatible
batch scheduler. First, the VM may be configured to join a global scheduling pool, via mechanisms
such as Condor Glide-ins [6], Condor with the IPOP [13] overlay network, or Kestrel [12]. If this is
not chosen, the VM should utilize a common distribution of the GNU/Linux operating system such
as the various Debian or Red Hat derivatives. The use of such as system maximizes the probability
that appropriate packages will exist for the system, thus minimizing administrator effort.

Some VO’s may wish to have a measure of certainty that their VM has not been altered from
the original image. This guarantee is not easy to enforce in the general case. In fact, it is likely
that various sites must alter the VM image from its original state due to the factors discussed in this
section. It is possible for a VO administrator to sign the VO image with his/her X.509 certificate.
This will greatly restrict the VM’s usability because the VM will only be able to be deployed at
sites which can utilize the provided VM image without modification.

4. Contextualizing the STAR VM

A practical application of the principles and techniques discussed in Section 3 has been per-
formed at Clemson University to enable the contextualization of the STAR experiment’s [3, 8] VM.
This VM contains the programs and libraries necessary for the simulation and analysis of STAR’s
experimental data.

The STAR VM image is provided as a Xen partition image named starworker_part.img
with no bootloader or kernel. Therefore, to use the image with KVM, it is necessary to create a
disk device. To do this with the qemu-img tool, issue the command qemu-img create -f

raw 10G starworker.img.
Then, in order to have the appropriate bootloader and kernel installed into the image, a fresh

installation of the guest operating system (Scientific Linux in this case) is performed. This instal-
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lation should be performed with the target hypervisor. For QEMU/KVM, the invocation command
is qemu-kvm -hda starworker.img -m 512 -net nic -net user. Note that the
contents of a this installation will be completely replaced in a later step, this installation is simply
to apply the appropriate partitionioning scheme and to install the bootloader. These two steps may
be performed manually if desired.

Now that the kernel and bootloader are installed into the new image, the contents of the root
directory must be copied from the provided image to the new image. Do do this, both images must
be mounted. However, the new disk image cannot be mounted directly, the partition inside the
image must be mounted. There are two ways of doing this: using kpartx and calculating the
offset manually.

To use kpartx, issue the following commands:

1. kpartx -l starworker.img to see which loop devices will be created (some trial and
error may be necessary to mount the correct partition),

2. kpartx -a starworker.img to actually create the loop devices,

3. mount /dev/mapper/loop0p# /mnt/loopdisk where # is the partition number
to mount.

To calculate the offset manually issue the commands

1. fdisk -lu starworker.img wherein the output will contain a start column that
contains the offset of each partition as well as a header giving the units of the offset,

2. mount -o loop,offset=$(( $START * $UNITS )) starworker.img

/mnt/loopdisk/ where the $START variable has been set with the value of the start
column and the $UNITS variable has been set with the value of the units given by fdisk.

Once the appropriate partition in the disk image has been mounted, the partition image is mounted
with the command mount -o loop starworker_part.img /mnt/looppart/.

Once both images have been mounted, the command cp -a /mnt/looppart/*
/mnt/loopdisk is used to copy the contents of the partition image into the disk image. Then the
images are unmounted with the commands umount /mnt/looppart and umount

/mnt/loopdisk. If kpartx was used to mount the partition, the command kpartx -d

starworker.img is issued to remove the loop devices. At this point, the STAR VM is bootable
with KVM and the site-specific batch scheduler and shared filesystems are configured as normal.

Instance-level contextualization also needs to be performed on each instance of the image. Due
to the site-local networking and storage environments, the only resource that has to be leased to the
VM instance is a MAC address. This is performed via a functional mapping from the hypervisor’s
hostname to a MAC address, avoiding the need for a central leasing service.

5. STAR VM Results

The STAR VO provided an image that was contextualized for the prototype cluster using the
procedures outlined in Section 4. Figure 2 depicts the STAR VM’s integration with the prototype
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Figure 2: Integration of the STAR VM into the prototype VOC

Figure 3: Condor reaction time by Job ID as observed by STAR

VOC. Once the VM has image-level contextualization performed, it appears to the STAR VO to be
the same as any other STAR-supporting resource.

STAR utilized the 16 slots available and submitted 32 jobs. The job’s 280MB of total output
was streamed back to the Brookhaven National Laboratory (BNL) at 6.8MB/s.

The use of network-backed copy-on-write images means that the time required to stage the VM
image to the node is negligible. The booting of the VOC nodes added approximately 7 minutes of
overhead to the 11 hours of overall walltime required by the workload. Note than an individual
VM takes much less than seven minutes to boot [5], but all VMs did not boot in parallel due to
behavior of the VOC sizing daemon described in Section 1. The overhead of booting the VMs plus
virtualization overhead gives a total VOC overhead of approximately one percent.

As shown in Figure 3, the VOC’s Condor scheduler was fast for the first two jobs due to the
fact that the watchdog was configured to keep two VMs running at all times. Jobs 2 through 16
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started as soon as a VM was started and joined to the Condor pool. Jobs 17-32 were forced to wait
in the queue because there were only 16 VOC nodes available. Once the first 16 jobs completed, 16
jobs remained in the queue, causing the VOC sizing daemon to decide against changing the number
of VMs. Thus the VMs started in response to the first 16 jobs remained running and Condor was
able to schedule the remaining 16 jobs to the VOC nodes without delay. This observation validates
prior work that showed that synthetic jobs were well mapped to resources [10].

6. Conclusions

Contextualization of virtual machines is an operational necessity. Of the two stages of contex-
tualization, instance-level contextualization is the most easily automated. Image-level contextual-
ization generally requires systems administrator effort due to the large number of variables present
in each specific image, hypervisor, and site configuration. The principles of contextualization that
are presented in this work have been shown to be implementable in practice. Unfortunately, due to
the complexity of the problem they can only serve as general guides. A worthwhile future goal is
to develop a system for automating image-level contextualization.

The Virtual Organization Cluster (VOC) model worked smoothly, with very little (1%) over-
head. The model allows a VOC to appear as a normal grid site, thus giving the user confidence in a
working and validated software stack. Thus, VOCs show great promise for providing customized
environments in a way that is maximally convenient for VOs.
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