
P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
3

Monitoring the software quality in FairRoot

Florian Uhlig∗

Gesellschaft für Schwerionenforschung, Plankstrasse 1, 64291 Darmstadt, Germany
E-mail: f.uhlig@gsi.de

Mohammad Al-Turany
Gesellschaft für Schwerionenforschung, Plankstrasse 1, 64291 Darmstadt, Germany
E-mail: m.al-turany@gsi.de

One of the challenges of software development for large experiments is to manage the contri-
butions from globally distributed teams. In order to keep the teams synchronized, a strong and
immediate quality control is important to find problems when they are introduced in the code
base. This quality control includes checks if the project can be build from the sources but also
if the executable can be executed and delivers the expected results. The requirement to do these
tests frequently and on many different platforms immediately results in the necessity to do these
checks automatically.
With an increasing number of supported platforms it becomes impractical to maintain installations
of all these platforms for quality assurance. The easiest way to overcome this problem is to use
a client server architecture. The clients for each platform to be tested do the build and test step
and send the collected data in the end to a central server. This central server is responsible for the
storage, the processing and in the end for the presentation of the data.
In this article, we present the scheme which is used within the FairRoot framework to continu-
ously monitor the status of the project. The tools used for this task are based on the open source
tools CMake and CDash.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
February 22-27, 2010
Jaipur, India

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:f.uhlig@gsi.de
mailto:m.al-turany@gsi.de


P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
3

Monitoring the software quality in FairRoot Florian Uhlig

1. Introduction

The proposed project FAIR (Facility for Anti-proton and Ion Research) is an international
accelerator facility of the next generation [1]. It builds on the experience and technological devel-
opments already made at the existing GSI facility, and incorporates new technological concepts.
The four scientific pillars of FAIR are NUSTAR (nuclear structure and astrophysics) [2], PANDA
(QCD studies with cooled beams of anti-protons) [3], CBM (physics of hadronic matter at highest
baryon densities) [4] and APPA (atomic physics, plasma physics, and applications) [5].

The FairRoot framework [6,7,8] is an object-oriented simulation and analysis framework for
experiments planned to be built at FAIR. It is based on ROOT [9], and the Virtual Monte-Carlo
(VMC) [10] interface. It includes core services for detector simulations and offline analysis. The
framework, is designed to optimize the accessibility for beginning users and developers, to increase
the flexibility, to cope with future developments, and to enhance synergy between the different
physics experiments at or outside the FAIR project.

Beside the framework itself the FairRoot core team also provides the tools to build and test
the experiment specific software base on FairRoot. The build system is based on the open source
software CMake [11,12]. CMake itself includes the capability to automatically compile and test the
project. This creates the possibility to implement an automatic quality assurance of the software on
many different platforms.

Platform in this sense means a combination of operating system, operating system flavor,
compiler, and compiler version. The supported operating systems are Linux in nearly any flavor
and MacOS X 10.5 and 10.6. There is also an experimental port to Open Solaris. There are no
known restrictions concerning the compiler. The code was already tested with the GNU compiler
collection (gcc), the Intel compiler collection (icc), and the Sun Studio compiler suite, however the
mainly used compiler is from gcc.

The collected results from any of these different platforms are sent to a central web server.
This web server uses the php base open source tool CDash [13] and a database to store, to process
and display all the collected information.

The complete build and test system is based on the open source tools CMake, and CDash.

2. Build System

FairRoot started as many projects with Unix makefiles, but after some time it became obvious
that it would need too much manpower to maintain these makefiles for several different platforms.
We evaluated several programs to generate makefiles in an automatic way depending on the plat-
form. Finally we chose CMake as build system for FairRoot since it provides all needed features,
it is open source and available for all our target platforms.

CMake is an open-source system that manages the build process in an operating system and
in a compiler independent manner. Simple configuration files in a portable text format are used
to generate native build files. These can be either project files for Integrated Development Envi-
ronments such as Eclipse, Apple XCode or Microsoft Visual Studio, as well as UNIX, Linux or
NMAKE style makefiles. Due to it’s modular design it is easily extensible. CMake comes with an
integrated scripting language which has the ability to create complex custom commands for auto-

2



P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
3

Monitoring the software quality in FairRoot Florian Uhlig

matically generated files such as ROOT dictionaries. These commands can be used to generate new
source files during the build process that are then compiled into the software. CMake also includes
the functionality to execute other external programs. This is for example used to automatically
generate the class documentation of FairRoot on a daily basis using Doxygen [14].

3. Automatic Tests

Since FairRoot is used by all of the big FAIR experiments as base for there own specific devel-
opments it is essential to know the status of the project at any time to find problems which enter the
code base as early as possible. This includes especially changes in the external dependencies and
problems which occur only on some of the supported platforms. To produce this quality assurance
(QA) information as the first step we actually use the tool CTest which is part of the CMake suite.
The second step is to collect all the created information, store them, and provide the information
for later usage.

Since the QA information should be created at any time they are useful, there are three different
build modes which are supported. The first one is the so called Experimental Build for developers
who experiments with new features and want to build and test the code automatically. They can
trigger the Experimental Build on there machine which then will automatically configure (create
Makefiles using CMake), compile and test the code, which can be different from the code in the
repository, on their system. To test the project the same ROOT macros are used as for the normal
simulation and reconstruction. The test stage is easily extensible by adding new ROOT macros or
external programs.

Whenever there is a change in the central software repository, the repository triggers a Contin-
uous Build on a dedicated build server which automatically updates the local working copy from
the central software repository, and after that configures, compiles, and tests the project. To de-
crease the time needed for the compile step the Continuous Build does not start with a clean build
directory but reuses the build directory from the last run so that only files which have changed have
to be compiled again.

Once per day (normally during night when the machines are idle) we run a Nightly Build on
all available platforms. In contrast to the Experimental Build and Continuous Build we start always
with a clean build directory. Also the tests performed can be different between the three test modes.

After any of the three test modes the generated information about the configure, compile and
test stage are sent to the central web server for further usage. The information contains the output
from the generation of the Makefiles, all warnings and errors from the compilation stage, and the
results from the test stage. The build stage will not fail completely if there is an error but will go
on with the next target which is not affected by the error. In the end one will get all error messages
which occur during the build stage. After the build stage one may have a project with missing
libraries or executables. This can then affect some of the tests but others will run without any
problems. The results from the test stage include information if the test passed, failed or ran into
a timeout together with the runtime for the test and in case of a failure or a timeout the complete
output of the test.

The advantage of this client server architecture is, that each user can setup his own test system.
This makes it possible to test many different platforms without the necessity to have direct access

3



P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
3

Monitoring the software quality in FairRoot Florian Uhlig

to the system. This also makes sure that the environment on the user system is exactly the same as
the one on which the test is done. If both systems are different there is always the possibility that
there are slight differences between the two systems which results in endless debug sessions to find
these differences. So using this client server architecture each user can help to improve the project
when setting up a test system for an up to now untested platform. This setup is done adjusting
one template according to the setup of the specific machine and creating a cron job for automatic
execution of the build and test script.

Figure 1: Overview page of the FairRoot Dashboard.

4. Dashboard

The second and not less important part of the quality control is to collect all the produced
information, to process them, and as final result to display them in an easy to use fashion. For
these tasks the software package CDash is used together with a database to store the collected
information. CDash on request generates dynamic web pages out of the stored information. As an
example the main page of the so called Dashboard is shown in figure 1 for a given date. This main
page provides a fast overview about the status of the project. From here one can get more detailed
information e.g. about updates or problems during the configure, build and test stage.

From the generated information sent by the clients the server can produce additional aggre-
gated information as for example the runtime for a specific test on a specific machine as a function
of time as shown in figure 2. In the figure one can clearly see two hot spots were some changes

4



P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
3

Monitoring the software quality in FairRoot Florian Uhlig

in the code result in a much longer run time of the test. A problem which can sneak in the code
unnoticed if no automatic testing is done. All the available information enables the developers to
spot problems in a fast and convenient way. The client server architecture of the QA process en-
ables developers to test the code on all available platforms, even if one has no direct access to the
specific platform.

The server can also produce automatic alerts to administrators or developers in case of prob-
lems. This can be e-mails to a developer who commits erroneous code or e-mails to site maintainers
if a machine expected to submit results did not do so.

Figure 2: Detailed run time information for a specific test.

The idea with the Dashboard is to have only one point where all available information is
accessible. This also includes direct links from the generated web pages to the web front end for the
SVN repository. This allows to go from an error or a warning directly to the problematic file. The
Dashboard also provides direct access to all kind of other information like the class documentation
generated with Doxygen or the results about the coding convention compliance check.

5. Summary

In summary the build and test system of FairRoot was described which is completely based
on the open source software CMake. One of the big advantages of CMake is the huge flexibility. It
easily allows to include the production of the Doxygen documentation or the check of the coding
conventions into the FairRoot build framework using only the built in macro language of CMake.
The build system provided by FairRoot is also used by the experiments which uses FairRoot as
base of their own experiment specific developments. This enables these experiments to use all the
functionality like the test support or the dashboard out of the box.

In table 1 we summarize information about two experiments using the FairRoot build system
and compare them with results from the ALICE experiment [15] which uses also a CMake based
build system. Shown in the table are the number of targets which have to build for each of the
experiments. A target is either a shared library or an executable. Together with this information
also the time to configure the project and the compile times are give for a normal and a parallel
build. To get an idea about the size of the different projects the number of lines of code (LOC) is

5



P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
3

Monitoring the software quality in FairRoot Florian Uhlig

Experiment Targets configuration build build LOC
time time -j1 time -j8

CBM 29 2s 612s 92s ≈ 270.00
Panda 61 4s 730s 97s ≈ 370.00

ALICE 203 20s 2690s 340s ≈ 2.500.00

Table 1: Configure and compile times for different experiments using CMake.

given as reference. This number was achieved using the tool cloc [16] and is the number of lines of
code excluding comment and blank lines. All tests concerning the configuration and compile times
have been done on a 8-core Intel Xeon with 2.67 GHz.

Depending on the different build machines submitting to the Dashboard the build times range
from 1.5 to 20 minutes for CBM and 1.5 to 10 minutes for Panda. The number of tests depend
very much on the experiment and is normally increasing with time. Up to now no unit tests are
implemented as all tests are system tests. The time per test varies between some seconds and
approximately 5 minutes which results in a large time spread for the complete test times (4 to 45
minutes for CBM and 10 to 60 minutes for Panda). The main reason for this large spread is that
the tests cannot run in parallel. This limitation should disappear with the newest version of CMake
but is not tested for the FairRoot build system. The approximate number of tested platforms for
CBM and Panda is around 20. This number is always changing because new platforms are used
by developers and old ones are switched of. Since the test platforms are not maintained by the
FairRoot core team but by the different users always the platforms of interest are tested.

References

[1] FAIR: http://www.fair-center.de/

[2] NUSTAR: http://www.gsi.de/forschung/fair_experiments/NUSTAR/index_e.html

[3] PANDA: http://www-panda.gsi.de/

[4] CBM: http://www.gsi.de/forschung/fair_experiments/CBM/index_e.html

[5] APPA: http://www.fair-center.eu/APPA-Physics.187.0.html

[6] M. Al-Turany, D. Bertini, and I. Koenig. CbmRoot: Simulation and analysis framework for CBM
experiment. In S. Banerjee, editor, Computing in High Energy and Nuclear Physics (CHEP-2006),
volume 1 of MACMILLAN Advanced Research Series, pages 170-171. MACMILLAN India, 2006.

[7] D. Bertini, M. A-Turany, I. Koenig, and F. Uhlig. The fair simulation and analysis framework. In
International Conference on Computing in High Energy and Nuclear Physics (CHEP’07), volume
119 of Conference Series. IOP Publishing, 2008.

[8] M. Al.-Turany FairRoot: http://fairroot.gsi.de.

[9] R. Brun and F. Rademakers. Root - an object oriented data analysis framework. Nuclear Instruments
and Methods in Physics Research A, 389:81-86, Sep. 1997.

[10] R. Brun, F. Carminati, I. Hrivnacova, and A. Morsch. Virtual Monte-Carlo. In Computing in High
Energy and Nuclear Physics, pages 24-28, La Jolla, California, 2003.

6



P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
3

Monitoring the software quality in FairRoot Florian Uhlig

[11] CMake: http://www.cmake.org

[12] K. Martin and B. Hoffmann. Mastering CMake, A Cross-Platform Build System, Kitware Inc., 2007

[13] CDash: http://www.cdash.org

[14] Doxygen http://www.doxygen.org

[15] ALICE: http://aliceinfo.cern.ch/Collaboration/index.html

[16] cloc: http://cloc.sourceforge.net/

7


