PROCEEDINGS

OF SCIENCE

An improvement in LVCT cache replacement
policy for data grid

Jagdish Prasad Acharalz, Abhishek Rathore?, Vijay Kumar Gupta2 and Arti
Kashyap2

LNMIIT, Jaipur, Indie
E-mail: j agdi sh. 06@nniit.com arathore.06@nniit.com
vijay.06@nmit.com arti.kashyap@nmit.con

Caching in data grid has great benefits becaudastér and nearer data availability of d
objects. Caching decreases retrieval time of dajacts. One of the challenging tasks
designing a cache designing its replacement policy. The traditiongphlacements policie
based on LRU and LFU algorithms are not suitabletlie data grid because of la-and-
varying size and retrieving cost of data objectdata grid. Replacement policies used ita
grid are based on calculating utility function feach file which takes care of size ¢
retrieving cost of the file along with localititrength. Lesser the value of locality strengthéi
file, it is better to evict that file. One of thetential eplacement policies, i.e. Least Va
Based on Caching Time (LVCT), estimates the logairength in the utility function usir
“Caching Time (CT)” where CT for a file F is defihéo bethe sum of size of all files access
after last reference tthe file F. Here, we propose that number of files acegsafter las
reference tcthe file F should also be considered along with CTthe estimation of locality
strength so that a better decision can be mad&édagviction of a file

13th International Workshop on Advanced Computimg Analysis Techniques in Physics Rese- ACAT 201
Jaipur, Indie
February 2-27 201(

! Speake

Copyright owned by the author(s) under the ternth@fCreative CommorAttribution-NonCommercie-ShareAlike Licence. http://pos.sissa.it



An improvement in LVCT cache replacement policyl&ta grid Jagdish Prasad Achara

1. Introduction

A large amount of data generated from various modeientific experiments is hard to
store at a single place. This led to the conceptdafa grid which is a network of
geographically distributed platforms of high penfi@nce heterogeneous computational nodes
and data storage resources [1].

For the purpose of integration of data, we nee@raice to manage and retrieve data
efficiently in data grid. Data intensive applicaitso are efficiently supported through
middleware services in data grid. Storage Resolaaager (SRM) is a middleware that
facilitates the sharing of data and storage ressuic data grid [2]. When a request for a
particular data is made to SRM by a client, it's fob of SRM to fetch the data efficiently to
the client. Sometimes, a client may request theesilm after a short period of time, so, disk
cache functionality is used in SRM so that it ddeseed to go to the source of data each and
every time a request is made by the client. Digtheamechanism plays an important role in
SRM by saving network bandwidth and providing fasteailability of data.

Cache replacement policy has a significant rol@isk cache because it decides which set
of files are to be evicted when space is needdlardisk cache and whether a newly arrived
file should be cached or not. We cannot use tatili page replacement policies like LRU,
LFU in data grids because they keep track of acpatiern only. In data grid, data objects
have large-and-varying size and retrieving cost.tBese attributes should also be considered
in cache replacement policy along with access patte

An effective replacement algorithm works becauseexiStence of locality. In our
context, frequently accessed files have more Igcalirength. It is known that an optimal
algorithm chooses the object with the smallestligcatrength for eviction with fixed sizes
and uniform retrieving cost. For caching files withried sizes and a non-uniform retrieving
cost, locality strength of a file is combined with size and retrieving cost in a utility function
to determine its benefit of being kept in the digk

So, a new type of replacement algorithms were dgeel based on utility function where

Utility function = L ocality Strength Estimator * Retrieving Cost / File Size

It's very easy to know file sizes and to estimdieirt retrieving costs but the most
challenging task in implementing this utility fuiast is to estimate locality strength on-line by
correctly interpreting history access patternsthim three factors of a utility function, locality
strength is the most critical one, which determioashe hit ratio, while the other two factors
are mainly related to the amount of gain from tiie buch as responsive time reduction and
network bandwidth savings [3].



An improvement in LVCT cache replacement policyl&ta grid Jagdish Prasad Achara

2. Existing Replacement policiesin Data Grid:

Cache replacement policies have been extensivetiiest in the past and many policies
are devised. These replacement policies can bellgrokssified in two categories (i) policies
without using utility function and (ii) policies bad on utility function.

Some of the major replacement policies, withoditytiunction, are depicted below:

L east-Recently-Used (L RU): evicts the set of file(s) which are not usedtfa longest period
of time.

L east-Frequently-Used (L FU): evicts the set of file(s) which are used leastrof

Size [4]: evicts the set of file(s) which has largdages

Log (Size) + LRU [5]: evicts the set of file(s) which has the largeg (Size) and is the least-

recently used file among all files with same Lo@é€S.
The replacement policies where the concept oftyfilinction has been used are:

Hybrid Algorithm [6]: uses (nref*" as the locality strength estimator, where nigfthe
number of references to file i since it last erddarethe cache. Ws a constant.

Greedy-Dual Size (GDS) [7]: It's an extension to LRU, which also incorptes varied
retrieving cost and file sizes in it. Its localisgrength estimator for a file is essentially the
inverse of the number of missed files since it dasess.

Least Value based on Caching Time (LVCT) [3]: In this policy, locality strength estimator

is the inverse of ‘Caching Time (CT)’ where CT ofiile F is the sum of size of all files
accessed after last reference to the file F.

3. LVCT Cache Replacement Policy and scope of improvement:

Estimation of ‘Caching Time’ in this policy is baken Timescale Relativity Principle.
This policy also takes care of whether a newlyvadifile should be entered in the cache or
not whereas all previous replacement policies {8] 4dmit each and every new file in cache
without considering its eligibility. This avoids amg file admission in the cache. Once a
wrong file is admitted into disk, it could remaimgache for a long time even if it would not be
accessed any longer because of its recent access.

In LVCT, when the value of ‘Caching Time’ increas#i®e value of the utility function
decreases for this policy if the ratio of two otparameters remains the same. This is because
of the accumulated size of the accessed files lamdisk cache size to measure the probability
of in-cache file re-use. The value of the utilityn€tion is directly proportional to ‘File Cost’
because it's better to evict the file which takessl time to transfer (because of bandwidth,
distance etc.) as compared to some other fileeifsine of both files is the same. However, it's
better to keep the file of less size in cache aspaved to some other file if both of them have
the same cost to retrieve i.e. ‘File Cost’. Thisvisy; utility function is inversely proportional
to size of the file.

1 File Cost
X

Utility function for LVCT =
J Caching Time File Size



An improvement in LVCT cache replacement policyl&ta grid Jagdish Prasad Achara

This policy showed better performance comparedréwipus policies [2, 4-8], but it did not
take care of the cases where CT computed in theypel almost the same but the number of
files accessed after last reference to the filéfferd largely. For example, two cases where (i)
number of files is large but sizes of these filess small and (i) number of files is small but
sizes of these files are big after last reference file; can result into nearly same value of CT
and hence same value of locality strength. Howeleeglity strength of first case should be
low compared to second case because of large nurhffiegs accessed after its last reference
having the same value of CT for both. For more nmi@tion on LVCT cache replacement
policy, please, refer to [3].

4. Proposed improvement in LVCT policy:

LVCT evicts file based on size of accessed filely tmecause time advances at a slower
rate for accessing files with small sizes than ssicg files with large sizes [3]. To formulate
this fact, locality strength estimator in LVCT isetinverse of ‘Caching Time'. We propose
that if we take the number of accessed files ddt&trreference to a file in consideration along
with ‘Caching Time’, then, locality strength willlso incorporate frequency of access.
Incorporating frequency of access with ‘Caching &irim locality strength estimation would
result in better performance.

We are illustrating one of such cases where a lsl@eof small files with initial file, say
F1, and after that, a small slot of large fileshwiititial file, say F2, are accessed as shown
below in Fig. 1.

Width represents file Size

F1 F2

Order OF Access

Fig.1

In this case, F1 and F2 will have comparable ‘Qaghiime’ in LVCT although a large
number of files have been accessed between Flariice the files accessed in between F1
and F2 are of comparably smaller size than filesessed after F2, they will not have
significant effect on ‘Caching Time’. In such casaslity function of F1 will become more
than F2 because of large file size difference iraRd F2. This will hide the effect of ‘Caching
Time’ in estimation of utility function.



An improvement in LVCT cache replacement policyl&ta grid Jagdish Prasad Achara

Here, we propose to incorporate how recently aisilaccessed in addition to ‘Caching

Time’ estimation. To formulate this, we define agmeter N as number of accessed files
after last reference to a file f. In our polidyVCT (Improved-Least Value based on Caching

Time), locality strength estimator is the inverdepooduct of N and ‘Caching Time'. So,
utility function for our policy ILVCT is as shownetow:

1 File Cost
X

Utility function =
ility function N; x Caching Time File Size

Because of the better estimation of the localitersith, we expect ILVCT to perform
better than LVCT especially when there is a largeation in the size of files accessed.

5. Reaults and Discussion:

We use hit ratio and byte-hit ratio for comparismtween LVCT and ILVCTHit ratio is the
ratio of number of cache hits (when a requesttisfead by the cache, it's called a cache hit;
and when a request is not satisfied by the catlsecalled cache miss) to number of total
requests made to the cache (cache hits + cacheghi&milarly byte-hit ratio is the ratio of
the size of files of cache hits to the total sifalbfiles whose requests are made to the cache.
Sometimes, hit ratio and byte hit ratio are alsfingel in percentage, but, here, they are not in
percentage.

Comparison of Hit Ratio

==LRU
—LVCT
' * improved LVCT

Hit Ratio

10 20 40 100 200 1000

cache size (GB)



An improvement in LVCT cache replacement policyl&ta grid Jagdish Prasad Achara

Comparison of Byte-Hit Ratio

L

2 VL
W om y moin

==~LRU
- VCT
o improved LVCT

Hit Ratio

s
[T ]

]
10 20 40 00 200 1000

cache size(GB)

Fig. 2: Hit Ratio and Byte Hit Ratio curves of siation on data from JLab workload
trace for LRU, LVCT and our Improved LVCT

For this purpose, we have made a simulator tothestcache replacement policy. The real
workload trace was taken from Jefferson’s Natigkadelerator Facility (JLab), which reflects
representative data grid access activities for @ogeof 4 months (October 2009-January
2010). The size of files accessed for this peribd months was more than 1000TB. We have
taken the cache size of 10, 20, 40, 100, 200 aA8GB for replacement policy simulation.

Both hit ratio and byte hit ratio curves for ILVGhow slightly better performance than
LVCT. This proves that ILVCT is better than LVCaahe replacement policy.

6. Conclusion:

As depicted by simulation results, the values ofrdéio and byte-hit ratio for ILVCT is
more than LVCT cache replacement policy for alnadktlisk cache sizes. The magnitude of
improvement of these ratios for ILVCT with LVCT im@ases as the size of disk cache
increases because of the increase of cases wieeecigha large variation in the size of files. At
the same time, it's clearly visible from the Figthat this improvement is not so huge. This
improvement is not as pronounced as expected dwertolow occurrence of cases where
subsequently accessed files have large differens&e in this real workload trace from JLab,
which was basis for our proposed improvement.



An improvement in LVCT cache replacement policyl&ta grid Jagdish Prasad Achara

Acknowledgement: We thank Christopher Larrieu and David LawrencemfrdLab for
providing us real workload trace. We are very dudtéo Stephane Genaud from Strasburg
University for guiding us throughout this work.

References

[1] I. Foster and C. Kesselman, editofee GRID: Blueprint for a New Computing
InfrastructureMorgan Kaufmann Publ., San Fracisco, 1999

[2] Ekow Otoo, Frank Olken and Arie Shosharnisk Cache Replacement Algorithm for Storage
Resource Managers in Data Grid&roceeding of IEEE Conference on Super-Computi2@02

[3] Song Jiang and Xiaodong Zhandfficient distributed disk caching in data grid nagemerit,
Proceedings of IEEE International Conference orsteluComputing, 2003.

[4] S. Williams, M. Abrams, C.R. Standbridge, GdAlla and E.A. FoxRemoval Policies in Network
Caches for World-Wide Web DocumeitsProceedings of the ACM Sigcomm96, August, 1996,
Stanford University.

[5] M. Abrams, C.R. Standbridge, G.Abdulla, S. Ndihs and E.A. FoxCaching Proxies: Limitations
and PotentialsWWW-4, Boston Conference, December, 1995.

[6] R. Wooster and M. Abrams,Proxy caching that estimates page load délaysoceedings of 6th
international World Wide Web Conference, April 1

[7] P. Cao and S. Irani,Cost-aware WWW proxy caching algoritiniroceedings of USENIX
Symposium on Internet Technologies and Systems] 199

[8] P. Lorensetti, L. Rizzo and L. VicisanoRéplacement Policies for a Proxy Cathe
http://www.iet.unipi.it/luigi/research.html



