PROCEEDINGS

OF SCIENCE

WatchMan Project — Computer Aided Software
Engineering applied to HEP Analysis Code Building
for LHC

Riccardo Maria Bianchi *2P [Renaud Bruneliére °, Sascha Caron P
8CERN, European Organization for Nuclear Research

CH-1211 Geneva (Switzerland)
bPhysikalisches Institut, Albert Ludwigs Universitét

Freiburg (Germany)

E-mail: | bi anchi @ern. ch

A lot of code written for high-level data analysis has manyikir parts like environment setup,
reading out the data of given input files, data selectionedbgelections, calculation of basic
physical quantities and the output of the analysis resMisreover nowadays the complexity of
software frameworks of HEP experiments forces the userdaiae many technical details before
starting writing the code implementing the analysis sgateWriting such code for each new
analysis is error prone and time consuming. Some softwaradworks already tried to simplify
the task, offering higher-level classes and functions thetusage of them nevertheless requires
from the user a certain knowledge about the framework béneat

What we wanted to achieve, as much as possible, with this gadkahe separation of concerns,
where the two layers are the physics analysis itself, wéldtionale and its algorithms, and the
coding part involving the framework of the experiment or #pecific data format. In our view
the user should mainly take care of the physics part, direxild easily translating an idea into
analysis code, leaving the technical details of handlirtg ttathe “machinery” beneath.

As a solution to this problem we designechW¢HM AN, a “data analysis construction kit" and a
highly automated analysis code generatoaT@éHMAN takes as input user-settings from a text-
like “steering file”, and it dynamically generates the coatplanalysis code, ready to be run over
data, locally or on the GRID. The package has been implerdémfeython and C++, using CASE
(Computer Aided Software Engineering) principles. Thekaae can be interfaced to different
data formats or experiments via a modular interface meshani

WATCHMAN implements a new idea in the HEP field, the usage of CASE tdl bellable, easy
to maintain and easy to validate data analysis code, maiimgdat analyzing new data from the
LHC collider.

13th International Workshop on Advanced Computing and ysisiTechniques in Physics Research
February 22-27, 2010
Jaipur, India

“*Speaker.

TMany thanks to the organizing committee of the ACAT Workshop and to ewerjn my group whose suggestions
and criticisms contributed to this work. The work of the author was done affilated withAlbert Ludwigs Universitat,
Freiburg, and it was supported by the GermBNBF.

(© Copyright owned by the author(s) under the terms of the Cre@ivmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:rbianchi@cern.ch

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

1. Introduction: why using CASE in HEP software?

In these months the Large Hadron Collider (LHC) has started to run ag&dtBN. The
collider has been built to reach a centre-of-mass energy never chaefere, and opens a new
range of energy to explore for new physics phenomena.

Four main experiments have been built on the collider, on the spots wherartidgobeams
meet each other. Those experiments are revealing, reconstructinggistering data from the
collisions. At stable working conditions there will be one collision every 25asaconds, and for
each collision many particles are produced at the same time, particles whase arad behavior
reveal the insights of the physics interaction who generated them. Due tdgihedte of the
collisions, and to the complexity of the detectors, experiments in the LHC epdcpraduce
petabytes of data per year. To analyze them in a search for new phyBicscists have to write
pieces of software which contain algorithms aimed to filter events and objeatsdén to keep
only the interesting ones which can lead to a great physics discoveryasmé cannot be sure
how new physics can display itself, a large number of different data s@eslgas to be set up to
scan all possibilities.

In High Energy Physics (HEP) the typical approach used while buildiadyars software is
creating a new class every time a new analysis is implemented. Then one starite tcode to
apply cuts or algorithms to the objects contained in data files. But one has aldd #olot of code
related to common operations or related to the specific data format or expérifites software
infrastructure of modern HEP experiments rely on complex frameworks:adgackages linking
sub-detectors output and reconstruction chains, providing interctione among the various parts
of the experiments and providing to the end user the access to data. Irettewds the framework
layer very often consists of lines of code aimed to configure and acce$mathework packages.
Lines of code not linked to the physics analysis at all, but necessary tdiagtine framework, im-
porting necessary modules, loading data, accessing data, accessaiges in data files, looping
over collections of particles, booking and filling histograms, handling filels thdse operations
are not related to the physics we want to explore, but they are negé@ssader to run the code to
analyze data. A typical analysis code will then contain a great part gb setdicommon operations
code, followed by a small to very large part of actual physics-relatdd.cbhen, if we start another
analysis, we usually start from a copy of the first one and we modify it;ejust cut-and-paste big
portions of code into the new class. And this is the usual approach for eees class we have to
implement. After a few iterations we end up with a plethora of classes and fiklashuge portions
of code in common (Fif] 1).

Within certain software frameworksor with certain data file types the amount of extra-code
can be much greater than the code directly related to the physics analysisfoAtnat reason
those files become very difficult to be maintained, updated and validatedexaample, let us
imagine what would happen if several container names were changeddatthBle format; or if a
function to access data changed in the experimental framework; thingsathaeppen, especially
in experiments in early stages. In that case we would need to open andl étbsave created
with the cut-and-paste approach, changing all the concerned commahglalaes. And the same

Ljike the “Athena" framework in the ATLAS experiment, for which this pag&avas originally developed, with the
name ATLASWATCHMAN [f].

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

My Perfect Analysis

Figure 1: Common approach when writing analysis-aimed source code. Bually starts writing a class,

and then this is copied and pasted into new classes wheimgtartplementing new analyses. After few
iterations the developer ends up with a plethora of classes maintained, with a large part of the code in
common.

thing would happen if we decide to change a value of a certain physicsrauthoeshold value of
some object selection cuts. Hence this approach is error prone, anddstinekanalysis code very
difficult to maintain.

That's why we decided to start the development of this package. We rdhae most of
the physics analysis code produced in our working group containede hurden of framework-
related common code, not directly related to the analysis itself and difficult idlda So we
thought to develop a CASECpmputer Aided Software Engineen)rifj] package to ease the devel-
opment and the maintenance of the physics analysis code. The userh&s define the actual
physics analysis strategy, in a user-friendly way; then the packageg#re user entries, adds
all the common and framework-related code, and it automatically and dynamieadsrates the
complete code, ready to be run on data files, both locally or on GRID [4].

Another source of bugs, while writing repetitive code, is recurring fdesuln physics anal-
ysis code, programmers very often use those formulas many times: let's think eut-based
analyses, where one selects particles and events through booleasstaps on thresholds values
of specific quantities, like the particle energy or the direction of its trajectbing concerned for-
mulas are usually quite simple and small, but they are used many times in order to impteme
analysis strategy. Let’s now think about a change in one of those formbithat happens the pro-
grammer is obliged to walk through all the classes to edit and update all theléoameurrences.
This is even more error prone if the analysis code is based on large amgecoformulas. Thus
we included in WATCHM AN a library of recurring common formulas, to be used by the user in the
analysis. In this way, if a change has to be done in such formulas, it hasdor® in one place
only, inside the collection of formulas.

The presence of the formula library and the fact that the code is automatiealrated, makes
the analysis code very easy to validate: once the formulas in the collectiomlatated, all the
automatically generated analysis code is automatically validated as well (exdg@dbr custom
code added by the user).

Another reason why we decided to start the development of a CASE gackdo ease the
writing of the analysis code. In fact, once the interface to a certain framkexwduilt, a user can

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

write the physics code without knowing the framework, which is usually quitegiex in modern
HEP experiments. In Fid.2 the main idea oRY¢HMAN is presented: easily implementing a
modern physics analysis on data, just directly translating an idea into aralg&swithout wasting
time with framework-related and common code; and at the same time avoiding icitngdarrors.

One of the most valuable feature ofANcHM AN is the possibility to handle many analyses
at the same time: the user can define, in the text-like steering file, as manyemnatysvanted,
linking each of them separately to certain sets of formulas or custom uder tben VKATCHM AN
generates the code for all of them together. Once the analysis is themeuthe data, the output
will contain the results for all the analyses, while remaining quite small and ligbhieThis is
made possible by a flagging mechanism, which flags objects inside the outpatbleliag to the
analysis they belong.

Experiments frameworks (like “Athena” for the ATLAS experiment, to giveexample) gen-
erally provide low- to medium-level functions to access, handle and andftae On the contrary
WATCHMAN, working on a higher level, provides tools to access and to manipulate dath wh
are independent of the underlying framework or of the data format wikicised. VATCHM AN
accepts interfaces to many frameworks or data formats and, once thadetesfprovided, the user
only has to define the data analysis in a text-like form in a “steering file”, wittading care of the
details of the framework which is used beneath, and without having to writeduel code. The
same analysis specification file (the “steering file” cited above) can thesdikan different data
formats, merely choosing another interface by setting the correspongti@nse in the “steering
file”. Different customized actual analysis code is then generated tbr éifferent framework or
data format interface, starting from the same “steering file” filled by the user

The problem of the complexity of the software frameworks of modern HEFe®@xents is
something which other software projects have tried to find a solution forgitgihelp and to guide
the user in the writing of the analysis code. Among them there are framewdikd simplify the
life of the physicist providing medium- to high-level functions and classes(ey the publicly
available ones there is, given as an example, “SFramé” [11]). But, ieviis case, the analysis
code has to be written by the user — usually in programming languages like IPython — and a
certain knowledge of the framework beneath, and/or about the speatidarmat which is used,
is required.

With WATCHM AN we wanted to go beyond that, tring to provide to the user a tool to define
the analysis as one would do on a sheet of paper, or on a napkin whilagipoffee. .. (see
Fig2). And so, as far as we know,ARcHMAN is the first “HEP analysis code generator” on the
market, which not only provides really high-level tools to simplify the writing & HHEP analysis
code, but which also actually generates, from the user settings, the ceroptke, ready to be run
on data.

In the following sections more details about the implementation are describeihgstaith
the core software, continuing with the modular interfaces and the usdrdrmhand ending with
an example of analysis implementation ilmRY¢HMAN.

2. Core Software

WATCHMAN is a framework with a core part containing common algorithms, which are pre-

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

' 3j 0l ep_new : {
"channel " : "ljjjv’,
& "obj Sel ection’: {
_("9\:’\,(-, "electron’:{"deltaR ej': 0.25}
A7 =N }
NAPAZT o ¥
\‘7\,«7}'\/ \OO"QQN" ‘cuts': { 1: { 'label’: "leptonPtCuts’,
NS - ot 0~ |:> "value': [20+Units. GeV]},
o« 7.0 A 2: { 'label’: 'jetPtCuts’,
3 ?\‘v%‘\ 2 Uy o "value’: [100+Units. GeV,
N e 40+Uni t's. Gev,
=i TovE 40+ Units. GeV],
N
(o) e
33 { 'label’: ’'mssingEtCut’,
“value': 80xUnits. GeV, },
O }
w7)
>
From analysis ideas at the coffee table... ...to actual analysis code!

Figure 2: Main idea of WATCHM AN letting the user easily implement analysis ideas.

sented in this section, and modular interfaces targeted to the specific dat fehich one wants
to analyze; those will be presented in the next section. A parser whicegaiser inputs, and
which handles all the framework components, completes the layout.

The layout of the main components is shown in [fig.3. The core is made up bger pad
a collection of common formulas; a steering file is the only front-end user agerf The parser
(“Par ser. py” in the figure) is the main engine of WCHMAN: it's a python module, whose
duty is to read the user settings from the steering fil&t €eri ngFi | e. py” in the figure), to
interact with the data-format interface in order to acquire specific setu@ aodefault parameters,
and to combine the user settings and the user custom formulas with the commmutafoin the
framework library (‘Cut sLi b. py” in the figure). At the end two files are generated by the parser:
the actual complete analysis code implementing the user-defined physicsignatyd a script
to run this analysis code on data filessé¢her at edAnal ysi sLi b. py” and “Gener at ed Run
Scri pt”, respectively, in the figure).

The generated run script can be run both locally or on GRID. For theAS ESD/AOD data
format interface provided with the package, a third script is automaticallgrgésed by VMTCH-
M AN, together with the run script and the analysis code: a script to launchéhanslysis directly
on data stored on the GRID in an automated way, via #eDA GRID Framework [p], over a
set of datasets defined by the user. Similar scripts to run the user analySR kD, are currently
under development for the other interfaces provided by @M AN.

The whole WVATCHMAN framework is written in Python, and it makes use of the ROOT
framework [Ip] and its Python bridge PyRO] [9] to read the data filesstmihg the output.
C++ language is also used whenever needed by a particular interfatt€yghon bindings are
automatically built using the binding tools provided with ROOT. The ROOT paekagequired
at the moment to run the generated analysis code, as the output dataearensawvr oot file. But
interfaces to data formats other than ROOT can be implemented.

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

Data Format / Framework

SteeringFile.py Modular Interface

CutsLib.py

file containing user physics

analysis and custom settings collection of files defining

default parameters and settings

\ v /

Parser.py

collection of cut formulas

the main code generator

N

GeneratedAnalysisLib.py Generated Run Script
the dynamically generated code, python script to run the
ready to be run on data generated code on data files

Figure 3: WATCHMAN main components layout. The “parser” is the main engine eftimework, whose
duty is to combine user settings with common code, to gea@abmplete analysis code ready to be run.

3. Modular interfaces

The core packages of \WWCHMAN do not contain any code related to a specific experiment
or data-format. All the specific code necessary to build complete codedertain framework, is
provided to the parser via a modular interface mechanism (seg Fig.4)a€lospecific interface a
set of files, containing for instance setup code or container names, hagptovided. The parser
then will blend those information with user settings, to build the analysis code.

Three interfaces are provided with the framework so far: an interfatieetpublicly available
Delphes|[B] data files, and two others for two different data formats imstiae ATLAS experiment,
which is running on the Large Hadron Collider (LHC) at CERN. Other iategs can be added by
the user, in a modular way.

The interface provides the specific instructions related to the particulafatatat or experi-
mental framework. For instance the names of the containers storing thiepbpgects in the data
file, or the calls to external packages to set up the environment; or also thememtation of the
function that returns the physical properties of the objects, for thdfgpdata format. More details
about the interface components and instructions on how to add a custofadatare presented and
explained in the WrcHMAN wiki, currently under preparatiofi][1].

4. User front-end interface: the Steering File

The so called &teering filé is the only user interface of WfCHMAN, so far. Within the

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

ObjectSelectionCuts.py

Collection of classes for objects
selection cuts

ParticleObjWrapper.py

DefaultObjsCollection.py ObjSelection.py

Bridge between WatchMan and actual

particle property names Applies object selection cuts

Container / Collection Names

Definitions.py

Defines default object
selection cuts

CppTools Run Script Writer Cuts Library

Execute.py

User
Steering File Loop on containers / collections
Storing collection handles

Specific Imports / Setup Code

L —2

Parser

/. N\

Generated Analysis Code Generated Run Script

Figure 4: The WatchMan modular interface main components. Datadbonexperiment-related settings
are specified in the files belonging to the modular interfade parser blends that information with the user
settings to build the analysis code.

steering file the user can set global options for the generated codesfind ds many analyses as
wanted. Through the global options the user can choose to store diffestadata in the output
file and to change the behaviour of the generated code. The analgsdsfimed in a text-like way
through Python dictionaries: the user inserts the steps for each anayisiwauld be done on a
sheet of paper, providing the name of the formula used in each step,awdlties taken as thresh-
olds. Fig[? shows an example of the translation of the analysis idea scritdedah a sheet of
paper at the coffee table (on the left side of the figure), into actual sisalgde through the steer-
ing file (right side). In the figure a simple analysis callgjl 0l ep_new’ is being implemented,
setting object selection and event selection cuts; for each cut a thregtiotdis given; for many
cuts defined in the formula library (as for thget Pt Cut s” in the figure) the length of the list
containing the threshold values sets the number of particles which the forrkekitao account.
If a custom formula is used, that has to be added in the steering file. Thdhbevwparsed by the
parser and integrated in the generated code. Custom formula can bbatkddr cuts or to fill
containers in the output file containing particular user-defined valuetheloase study presented
in Sectionp more details will be shown on how to implement a physics analysishic M AN.

5. Case study example: how to implement a SUSY-related anaig

We present here a short example of implementation of a physics analysis@itatitHM AN
analysis code generator. We will use the Delpligs [3] interface provididthe framework, and
we willimplement a cut-based analysis aimed to discover evidences of $upretry (SUSY) [B]
at LHC energy, with several physics channels. We skip here the ggltage; instructions about it

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

can be found on the Wiki page of the projedt [1]. Instead let’s look &t tmimplement a physics
analysis in the steering file. Let’'s say we want to analyze a certain decaySafSY particle.
We start by defining a channel selecting certain particles with certain giregiefor example we
want to select 3 hadronic jets plus one lepton plus missing transverseyeaedgve want to apply
certain cuts to the physical properties of those objects (like the transves®ntumPy), or of
the whole event (like the sphericftyr the effective masMles¢°). In the steering file the user has
just to define those cuts in a text-like way, as shown in Lisfing 1. As the rezzatesee Python
dictionaries are used to contain the definitions for each channel anddbraait; but besides some
extra parenthesis, the user settings appear mainly as plain text. The defafitonhannel is
composed by a label defining the channg)j @l epMedi unCut s” in the listing), by a set of cuts
used for selecting objects inside data before using them for the physsctice over the event
(“obj Sel ecti on”) and a set of sorted cuts for the event selectioruf‘s”), which are actually
those more related to the physics which we want to discover. In the exangmaelall the cuts but
one use built-in formulas provided byAWNCHM AN; only the last cut, (5: ' mef f* ") uses a custom
user-defined formula: the flagtist oni is set to “Tr ue” and the formula is provided by the userin
the same steering file, as shown in List[hg 2. In that listing one can see hownteners store the
physics objects from data: all the containers whose names are definedhottular interface (cfr.
SectionB) are taken into account by the “Parser” and the code to makeatfslable to the user
code is generated. Thus in the end the user can define formulas wiéne shn loop easily over
all the physics objects containers, looping ovesifidi dat es”. Other not-particle-like objects are
accessible via another container calledl’l ecti ons”. Moreover the same formula can be used
both for cuts, as in the example of Listifig 1, or to fill containers in the output file.

6. The output file containing final results: the WATCH M AN Ntuple.

A characteristic of VATCHM AN is that the output file contains the results for all the analyses
defined in the steering file. That means that common objects belonging teediffaralyses (let's
think of common particles like muons, jets or electrons) are stored only omdl the analyses,
and they are merely flagged according to the specific analysis they b&anb.physical quantity
is then computed with the right subset of particles which satisfy the requitsrdefined by the
user for a specific analysis.

WATCHMAN accepts also a list of steering files, and it builds a unique analysis codeua be
on data. Thus people within a working group can develop their own analygarately, which then
can be automatically combined with the others and run together. In this casatphd file will
contain the results from all the analyses defined in all the steering files.

An important work was done to find an effective way to have independealyses, while
assuring a lightweight output file. To reach this goal an attentive flaggirdhamésm of particles
and events has been set up, which make possible to share objects aratysgawhile avoiding
the storage of redundant information. A more detailed explanation follows.

2Sphericityis a measure of how spherical an event is, i.e. of how spherical ispéuiakdistribution of objects
belonging to the event (like jets, leptons, MET).

3Theeffective mass M+ is defined as the sum of the transverse momenpgrof the selected particles (like jets
and leptons) and the missing transverse en®t&yT

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

channel s = {

' 3j 0l epMedi untCut s’ : {
"channel " : " ljjjv’,

"obj Selection’: {’nmuon’ :{'ptMn’: 20.*Units. GV},
“electron’ :{"ptMn’: 20.*Units. GV},
" photon’: {" appl yOver| apRenoval ' : Fal se},
"tau' :{ appl yOverl| apRenoval ' : Fal se},

‘cuts': { 1: { 'label’: ’|eptonPtCutsExclusive’,
"value’': [20xUnits. GeV]},
2: { '"label’: "jetPtCuts’,

"value’: [100xUnits. GV, 40+Units. GeV,
40«Units. GeV], 1},

& { 'label’: "jetPtVeto’,
"value’': [40xUnits. GeV] },
4: { 'label’: 'm ssingEtCut’,
"value’: 80xUnits. GeV, },
5: { '"label’: ’'meff’,

“value’: 100+Units. GeV,
"fornula’: ' neff3JetsMetlLeps’,
"customi: True },

Listing 1. Example of physics analysis implementation in the steering file.

Figure[$ shows how theChj Sel ect i on” branch in the output file is filled for particle-like
objects. In this example we consider the jet collection. Let us assume thaaweehree object
selection definitions: Def aul t 7, “ TauSel ec” and “MyChan”. “ Def aul t ” is used when the user
does not define an object selection for an analysis; the other two amncdegfinitions, specified
by the user in the steering file, and in this example they are used for two dffexedt analy-
ses. Hence three flags for the three object selection definitions atedyreand those flags are
stored in the output file, in theohj Sel ect i onMap” vector contained in thel“nf oTr ee” ROOT
TTr ee object. The selection flags for particles (here for the jet collection) arel filtzording to
the position in the 6bj Sel ect i onMap”: if the physical properties of a jet satisfy the selection
cuts defined for a specific object selection 145 stored inside thej‘et Obj Sel ecti on” at the
corresponding position; otherwise @"is stored.

In a similar way the events are flagged according to the analyses they b&lwathannel ”
branch is a vector of strings, filled with the analysis name, each time an egtitdrcharacteristics
to satisfy the event selection of a particular analysis. In this way the searttm/events belonging
to a specific analysis is very easy: it's only matter of specifying a flag. Vaate are stored only
once, even if they belong to several analyses.

In Figure[f a distribution of thechannel s” branch is shown, where all the analyses specified
in the example steering file, shipped withWeHM AN, are visible. The plot is related to the same
SUSY analysis example presented in secfjon 5, but here we consider afidlyses defined in the
steering file: 10 SUSY-like analyses, with different settings, i.e. diffievbject and event selection
cuts. Each event can satisfy the requirements of one or more analysesn tine output file we

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC

Riccardo Maria Bianchi

—

The position in the

objSelectionMap vector

corresponds to the
position in the

jetObjSelection vector

Default TauSelec MyChan
0 1 2
154 128 85 80 71 54 11
Default 1 1 4 9 Y O
TauSelec 1 1 0 1 1 0 _|
MyChan 1 1 1 1 0 0

In this case the 3'd jet did not pass the cuts in the TauSelec object selection, and

a0 was put in the corresponding place inside the jetObjSel vector

In this case the 7th jet did not pass any object selection,

InfoTree ::

jetamom.pt()

vector < TLorentzVector >

jetObjSelection

vector < vector < string > >

s0 0 has been put in all entries of the vector

Figure 5: How theObj Sel ect i on branch is filled for particle-like objects.

Distribution of the events according to the analyses whose requirements they satisfy | Data Samples
—@— MSSM_gogo_pythia_incl
= —l— MSSM_gosq_pythia_incl
7] 5 -
c MSSM_sqgsq_pythia_incl
c 10 o ¥
g Q —¥— ttbar0j
et 4 =] " —H | o wan
© 10 ffﬁ!fff444.F441444.k47:::ii::: " =y —5— tthar2j
=
5 . —g——2— l:::l A tbary
1S 10 l —";‘Aj ttbardj
= * IS N —
E % :§:$ o w
10? %::ﬁ: —— 4 —h— W3
—%— * —f— waj
10 _'J
1
10t E [10 analyses defined by the user, 10 output flags
107 1 7 . 3 : 3 I 3 . 3 . 3 . : —
lep lep, S0/, Y0/, Y0/, Ve, Ve, Yose, Ye, =%
Dercu, i P pMed,-UmC PMegy,, ' PMegy, PCSe P Ony, Jets
Uts

Figure 6: Example of a plot of the¢hannel s” container from the output file, after having run the code
generated by WrcHMAN on different data samples. In this example the user defin€slU®Y-like analy-
ses, with different object selection and event selectids;@nd events passing the selection cuts defined in

me, C,
ustr%g Utspyy,

Sm,
006, a”eflooeev

those 10 analyses have been flagged according to them.

10

objSelectionMap

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

##--- User-Defined Fornul a
user Fornmul a = {
Meff formula: Highest Pt 4 Jets + MET + All Leptons

"meffr: {

"position':3

"formul &

neff = 0

if len(candidates[’jet’]) < 3: return neff

for i,jet in enunerate(candidates[’'jet’]):
if i >= 3. break
nmeff += getVal (candidates[’'jet’]J[i], 'Pt’)
pass

for i,el in enunerate(candi dates[’electron’]):
nmeff += getVal (candi dates[’electron’][i], "Pt")
pass

for i,nmu in enunerate(candi dates[’ nmuon’])
meff += get Val (candi dates[’' nuon’][i], 'Pt")
pass

mef f += MET_correct ed(candi dat es)
return neff

"},
}

Listing 2: Example of custom user-defined formula to be used for cuts oll twfitainer in the
output file.

will find — according to the example which we are considering — the eventgdthgccording to
the 10 analyses.

As already said, the user can define custom formulas to compute interegéingtigs. This
custom information can be stored in the output file, automatically computed witligthtesubset
of selected particles, and flagged as any other object.

7. Conclusions

WATCHMAN presents and implements a new idea in the HEP field, the usage of Computer
Aided Software Engineering to build reliable, easy to maintain and easy to telid#a analysis
code.

WATCHMAN is an analysis code construction kit, with which it's possible to handle many
analyses at the same time and to generate the actual complete code, reauytdlibe framework
also takes care of the specific data format setup, relieving the user eedeofilearning the details
of it. And it can be expanded with modular interfaces to work with new formats.

WATCHMAN is a new open-source Python project under continuous developmentamvith
already first stable release; it has a small community of active users aad <eady been used
with success to analyze data for some scientific notes and contributiongCatdrhbong the public
ones, see for examplg]13] ar{d][12]).

Acknowledgements

We would like to thank our colleagues in the Freiburg group who have caogdbto the

11

WatchMan Project - CASE applied to HEP Analysis Code Bugldiam LHC Riccardo Maria Bianchi

success of the package. In particular Florian Ahles, Asen ChristdsaDeumb, Jan Erik Sunder-
mann for their contributions to the ATLAS ESD/AOD data format interfacet danet Dietrich,

Michael Rammensee, Zuzana Rurikova and Kathrin Stérig for their extetssts and for their
suggestions. And many thanks also to others who contributed with suggestmnments, hints
or criticisms to the development of this package.

References

[1] “WATCHMAN — An highly automated Analysis Code Genergtor
https://tw ki.cern.ch/tw ki/bin/view Mai n/ Wat chMan.

[2] R.M. Bianchi, R. Bruneliére, “WTCHMAN Project — An automated analysis code generator for High
Energy Physics data analysis in the LHC era. Apply@QSEto HEP analysis, (In preparation. It
will be linked from theVATCHM AN websité.

[3] “Delphes — A framework for fast simulation of a generic celtidxperimerit
http://projects. hepforge. org/del phes/.

[4] “WorldwideLHC Computing Grid WLCG)”, http:/ /1 cg. web. cern. ch/ LCG and
http://public.web.cern.ch/public/en/Spotlight/SpotlightGid-en. htnm.

[5] “ThePaNDA Production and Distributed Analysis System
https://tw ki.cern.ch/tw ki/bin/view Atl as/ Panda.

[6] “CASE — Computer-aided software engine€ting
http://en.wi ki pedi a. or g/ wi ki / Conput er - ai ded_sof t war e_engi neeri ng

[7] R.M. Bianchi, R. Bruneliére, S. Caron, “ATLASXYCHMAN — An automated Analysis Code
Generator, a D3PD Maker and a Jobs Bookkeéper
https://tw ki.cern.ch/tw ki/bin/view Mai n/ ATLASWAt chMan.

[8] S.P. Martin, ‘A supersymmetry priméy’pp. 88—94,
http://arxiv. org/ pdf/hep- ph/ 9709356.

[9] W. Lavrijsen,“PyROOT — A Python-ROOT Bridgeht t p:
//root.cern.ch/drupal / content/how use- use- pyt hon- pyroot-interpreter

[10] “ROQOT — An Object-Oriented Data Analysis Framework”
http://root.cern.ch/drupal/

[11] “SFrame — A ROQT data analysis framework"
http://sourceforge. net/ projects/sfrane/

[12] “ATLAS Plots on gy Dependence of Physics Reach”
https://tw ki.cern.ch/tw ki/bin/view AtlasPublic/
At | asResul t sEcnDependence. WatchMan was used to analyze data in order to produce the
plots of the Supersymmetry discovery reach.

[13] “Prospects for Supersymmetry and Universal Extra Dimensidiscovery based on inclusive
searches at a 10 TeV centre-of-mass energy with the ATLAStdEt
http://cdsweb. cern.ch/record/ 1191916

12

