
WatchMan Project – Computer Aided Software
Engineering applied to HEP Analysis Code Building
for LHC

Riccardo Maria Bianchi ∗ a,b †, Renaud Brunelière b, Sascha Caron b

aCERN, European Organization for Nuclear Research
CH-1211 Geneva (Switzerland)

bPhysikalisches Institut, Albert Ludwigs Universität
Freiburg (Germany)
E-mail: rbianchi@cern.ch

A lot of code written for high-level data analysis has many similar parts like environment setup,
reading out the data of given input files, data selection, object selections, calculation of basic
physical quantities and the output of the analysis results.Moreover nowadays the complexity of
software frameworks of HEP experiments forces the user to acquire many technical details before
starting writing the code implementing the analysis strategy. Writing such code for each new
analysis is error prone and time consuming. Some software frameworks already tried to simplify
the task, offering higher-level classes and functions, butthe usage of them nevertheless requires
from the user a certain knowledge about the framework beneath.
What we wanted to achieve, as much as possible, with this package is the separation of concerns,
where the two layers are the physics analysis itself, with its rationale and its algorithms, and the
coding part involving the framework of the experiment or thespecific data format. In our view
the user should mainly take care of the physics part, directly and easily translating an idea into
analysis code, leaving the technical details of handling data to the “machinery” beneath.
As a solution to this problem we designed WATCHMAN, a “data analysis construction kit" and a
highly automated analysis code generator. WATCHMAN takes as input user-settings from a text-
like “steering file”, and it dynamically generates the complete analysis code, ready to be run over
data, locally or on the GRID. The package has been implemented in Python and C++, using CASE
(Computer Aided Software Engineering) principles. The package can be interfaced to different
data formats or experiments via a modular interface mechanism.

WATCHMAN implements a new idea in the HEP field, the usage of CASE to build reliable, easy

to maintain and easy to validate data analysis code, mainly aimed at analyzing new data from the

LHC collider.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
February 22-27, 2010
Jaipur, India

∗Speaker.
†Many thanks to the organizing committee of the ACAT Workshop and to everyone in my group whose suggestions

and criticisms contributed to this work. The work of the author was done whileaffiliated withAlbert Ludwigs Universität,
Freiburg, and it was supported by the GermanBMBF.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:rbianchi@cern.ch

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

1. Introduction: why using CASE in HEP software?

In these months the Large Hadron Collider (LHC) has started to run again atCERN. The
collider has been built to reach a centre-of-mass energy never reached before, and opens a new
range of energy to explore for new physics phenomena.

Four main experiments have been built on the collider, on the spots where the particle beams
meet each other. Those experiments are revealing, reconstructing and registering data from the
collisions. At stable working conditions there will be one collision every 25 nanoseconds, and for
each collision many particles are produced at the same time, particles whose nature and behavior
reveal the insights of the physics interaction who generated them. Due to the high rate of the
collisions, and to the complexity of the detectors, experiments in the LHC epoch will produce
petabytes of data per year. To analyze them in a search for new physics, physicists have to write
pieces of software which contain algorithms aimed to filter events and objects, inorder to keep
only the interesting ones which can lead to a great physics discovery. Andas we cannot be sure
how new physics can display itself, a large number of different data analyses has to be set up to
scan all possibilities.

In High Energy Physics (HEP) the typical approach used while building analysis software is
creating a new class every time a new analysis is implemented. Then one starts to write code to
apply cuts or algorithms to the objects contained in data files. But one has also toadd a lot of code
related to common operations or related to the specific data format or experiment. The software
infrastructure of modern HEP experiments rely on complex frameworks: sets of packages linking
sub-detectors output and reconstruction chains, providing interconnections among the various parts
of the experiments and providing to the end user the access to data. In the user code the framework
layer very often consists of lines of code aimed to configure and access the framework packages.
Lines of code not linked to the physics analysis at all, but necessary to initialize the framework, im-
porting necessary modules, loading data, accessing data, accessing containers in data files, looping
over collections of particles, booking and filling histograms, handling files. All those operations
are not related to the physics we want to explore, but they are necessary in order to run the code to
analyze data. A typical analysis code will then contain a great part of setup and common operations
code, followed by a small to very large part of actual physics-related code. Then, if we start another
analysis, we usually start from a copy of the first one and we modify it; or we just cut-and-paste big
portions of code into the new class. And this is the usual approach for every new class we have to
implement. After a few iterations we end up with a plethora of classes and files, with huge portions
of code in common (Fig.1).

Within certain software frameworks1 or with certain data file types the amount of extra-code
can be much greater than the code directly related to the physics analysis. And for that reason
those files become very difficult to be maintained, updated and validated. Forexample, let us
imagine what would happen if several container names were changed in thedata file format; or if a
function to access data changed in the experimental framework; things thatcan happen, especially
in experiments in early stages. In that case we would need to open and edit all files we created
with the cut-and-paste approach, changing all the concerned commands and values. And the same

1like the “Athena" framework in the ATLAS experiment, for which this package was originally developed, with the
name ATLASWATCHMAN [7].

2

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Loopingover particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Loop over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Loopingover particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Loop over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Loopingover particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Loop over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Loopingover particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Loop over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

My Perfect Analysis

Initialize Framework
Open files
Access Data
Access Containers
Access Collections
Book histograms

Looping over particles
 Apply cuts / Analysis

Fill histograms
Close files
Finalize job

Figure 1: Common approach when writing analysis-aimed source code. One usually starts writing a class,
and then this is copied and pasted into new classes when starting implementing new analyses. After few
iterations the developer ends up with a plethora of classes to be maintained, with a large part of the code in
common.

thing would happen if we decide to change a value of a certain physics cut, or a threshold value of
some object selection cuts. Hence this approach is error prone, and it makes the analysis code very
difficult to maintain.

That’s why we decided to start the development of this package. We realized that most of
the physics analysis code produced in our working group contained a huge burden of framework-
related common code, not directly related to the analysis itself and difficult to handle. So we
thought to develop a CASE (Computer Aided Software Engineering) [6] package to ease the devel-
opment and the maintenance of the physics analysis code. The user has only to define the actual
physics analysis strategy, in a user-friendly way; then the package parses the user entries, adds
all the common and framework-related code, and it automatically and dynamicallygenerates the
complete code, ready to be run on data files, both locally or on GRID [4].

Another source of bugs, while writing repetitive code, is recurring formulas. In physics anal-
ysis code, programmers very often use those formulas many times: let’s think about cut-based
analyses, where one selects particles and events through boolean expressions on thresholds values
of specific quantities, like the particle energy or the direction of its trajectory.The concerned for-
mulas are usually quite simple and small, but they are used many times in order to implement the
analysis strategy. Let’s now think about a change in one of those formulas. If that happens the pro-
grammer is obliged to walk through all the classes to edit and update all the formula occurrences.
This is even more error prone if the analysis code is based on large and complex formulas. Thus
we included in WATCHMAN a library of recurring common formulas, to be used by the user in the
analysis. In this way, if a change has to be done in such formulas, it has to be done in one place
only, inside the collection of formulas.

The presence of the formula library and the fact that the code is automaticallygenerated, makes
the analysis code very easy to validate: once the formulas in the collection are validated, all the
automatically generated analysis code is automatically validated as well (exceptonly for custom
code added by the user).

Another reason why we decided to start the development of a CASE package is to ease the
writing of the analysis code. In fact, once the interface to a certain framework is built, a user can

3

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

write the physics code without knowing the framework, which is usually quite complex in modern
HEP experiments. In Fig.2 the main idea of WATCHMAN is presented: easily implementing a
modern physics analysis on data, just directly translating an idea into analysiscode, without wasting
time with framework-related and common code; and at the same time avoiding introducing errors.

One of the most valuable feature of WATCHMAN is the possibility to handle many analyses
at the same time: the user can define, in the text-like steering file, as many analyses as wanted,
linking each of them separately to certain sets of formulas or custom user code. Then WATCHMAN

generates the code for all of them together. Once the analysis is then run over the data, the output
will contain the results for all the analyses, while remaining quite small and lightweight. This is
made possible by a flagging mechanism, which flags objects inside the output file according to the
analysis they belong.

Experiments frameworks (like “Athena” for the ATLAS experiment, to give an example) gen-
erally provide low- to medium-level functions to access, handle and analyzedata. On the contrary
WATCHMAN, working on a higher level, provides tools to access and to manipulate data which
are independent of the underlying framework or of the data format whichis used. WATCHMAN

accepts interfaces to many frameworks or data formats and, once the interface is provided, the user
only has to define the data analysis in a text-like form in a “steering file”, without taking care of the
details of the framework which is used beneath, and without having to write theactual code. The
same analysis specification file (the “steering file” cited above) can then be used on different data
formats, merely choosing another interface by setting the corresponding options in the “steering
file”. Different customized actual analysis code is then generated for each different framework or
data format interface, starting from the same “steering file” filled by the user.

The problem of the complexity of the software frameworks of modern HEP experiments is
something which other software projects have tried to find a solution for, trying to help and to guide
the user in the writing of the analysis code. Among them there are frameworkswhich simplify the
life of the physicist providing medium- to high-level functions and classes (among the publicly
available ones there is, given as an example, “SFrame” [11]). But, evenin this case, the analysis
code has to be written by the user – usually in programming languages like C++ or Python – and a
certain knowledge of the framework beneath, and/or about the specific data format which is used,
is required.

With WATCHMAN we wanted to go beyond that, tring to provide to the user a tool to define
the analysis as one would do on a sheet of paper, or on a napkin while sipping a coffee. . . (see
Fig.2). And so, as far as we know, WATCHMAN is the first “HEP analysis code generator” on the
market, which not only provides really high-level tools to simplify the writing of the HEP analysis
code, but which also actually generates, from the user settings, the complete code, ready to be run
on data.

In the following sections more details about the implementation are described, starting with
the core software, continuing with the modular interfaces and the user front-end and ending with
an example of analysis implementation in WATCHMAN.

2. Core Software

WATCHMAN is a framework with a core part containing common algorithms, which are pre-

4

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

’3j0lep_new’:{
’channel’: ’ljjjv’,

’objSelection’: {
’electron’:{’deltaR_ej’: 0.25}

}

’cuts’: { 1: { ’label’: ’leptonPtCuts’,
’value’: [20*Units.GeV]},

2: { ’label’: ’jetPtCuts’,
’value’: [100*Units.GeV,

40*Units.GeV,
40*Units.GeV],
},

3: { ’label’: ’missingEtCut’,
’value’: 80*Units.GeV, },

},
}

From analysis ideas at the coffee table... ...to actual analysis code!

Figure 2: Main idea of WATCHMAN: letting the user easily implement analysis ideas.

sented in this section, and modular interfaces targeted to the specific data format which one wants
to analyze; those will be presented in the next section. A parser which parses user inputs, and
which handles all the framework components, completes the layout.

The layout of the main components is shown in Fig.3. The core is made up by a parser and
a collection of common formulas; a steering file is the only front-end user interface. The parser
(“Parser.py” in the figure) is the main engine of WATCHMAN: it’s a python module, whose
duty is to read the user settings from the steering file (“SteeringFile.py” in the figure), to
interact with the data-format interface in order to acquire specific setup code or default parameters,
and to combine the user settings and the user custom formulas with the common formulas in the
framework library (“CutsLib.py” in the figure). At the end two files are generated by the parser:
the actual complete analysis code implementing the user-defined physics analysis, and a script
to run this analysis code on data files (“GeneratedAnalysisLib.py” and “Generated Run

Script”, respectively, in the figure).

The generated run script can be run both locally or on GRID. For the ATLAS ESD/AOD data
format interface provided with the package, a third script is automatically generated by WATCH-
MAN, together with the run script and the analysis code: a script to launch the user analysis directly
on data stored on the GRID in an automated way, via the PANDA GRID Framework [5], over a
set of datasets defined by the user. Similar scripts to run the user analysis on GRID, are currently
under development for the other interfaces provided by WATCHMAN.

The whole WATCHMAN framework is written in Python, and it makes use of the ROOT
framework [10] and its Python bridge PyROOT [9] to read the data files andstoring the output.
C++ language is also used whenever needed by a particular interface, and Python bindings are
automatically built using the binding tools provided with ROOT. The ROOT package is required
at the moment to run the generated analysis code, as the output data are saved in a.root file. But
interfaces to data formats other than ROOT can be implemented.

5

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

Parser.py

the main code generator

CutsLib.py

collection of cut formulas

SteeringFile.py

file containing user physics
analysis and custom settings

GeneratedAnalysisLib.py

the dynamically generated code,
ready to be run on data

Generated Run Script

python script to run the
generated code on data files

Data Format / Framework
Modular Interface

collection of files defining
default parameters and settings

Figure 3: WATCHMAN main components layout. The “parser” is the main engine of the framework, whose
duty is to combine user settings with common code, to generate a complete analysis code ready to be run.

3. Modular interfaces

The core packages of WATCHMAN do not contain any code related to a specific experiment
or data-format. All the specific code necessary to build complete code for acertain framework, is
provided to the parser via a modular interface mechanism (see Fig.4). For each specific interface a
set of files, containing for instance setup code or container names, has tobe provided. The parser
then will blend those information with user settings, to build the analysis code.

Three interfaces are provided with the framework so far: an interface tothe publicly available
Delphes [3] data files, and two others for two different data formats usedin the ATLAS experiment,
which is running on the Large Hadron Collider (LHC) at CERN. Other interfaces can be added by
the user, in a modular way.

The interface provides the specific instructions related to the particular dataformat or experi-
mental framework. For instance the names of the containers storing the physics objects in the data
file, or the calls to external packages to set up the environment; or also the implementation of the
function that returns the physical properties of the objects, for the specific data format. More details
about the interface components and instructions on how to add a custom interface are presented and
explained in the WATCHMAN wiki, currently under preparation [1].

4. User front-end interface: the Steering File

The so called “steering file” is the only user interface of WATCHMAN, so far. Within the

6

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

DefaultObjsCollection.py

Container / Collection Names

Run Script WriterSpecific Imports / Setup Code

ParticleObjWrapper.py

Bridge between WatchMan and actual
particle property names

Execute.py

Loop on containers / collections
Storing collection handles

Parser

User
Steering File

Generated Analysis Code Generated Run Script

CppTools

ObjSelection.py

Applies object selection cuts

Definitions.py

Defines default object
selection cuts

ObjectSelectionCuts.py

Collection of classes for objects
selection cuts

Cuts Library

Figure 4: The WatchMan modular interface main components. Data-format or experiment-related settings
are specified in the files belonging to the modular interface.The parser blends that information with the user
settings to build the analysis code.

steering file the user can set global options for the generated code and define as many analyses as
wanted. Through the global options the user can choose to store different metadata in the output
file and to change the behaviour of the generated code. The analyses are defined in a text-like way
through Python dictionaries: the user inserts the steps for each analysis as it would be done on a
sheet of paper, providing the name of the formula used in each step, and the values taken as thresh-
olds. Fig.2 shows an example of the translation of the analysis idea scribbled down on a sheet of
paper at the coffee table (on the left side of the figure), into actual analysis code through the steer-
ing file (right side). In the figure a simple analysis called “3j0lep_new” is being implemented,
setting object selection and event selection cuts; for each cut a thresholdvalue is given; for many
cuts defined in the formula library (as for the “jetPtCuts” in the figure) the length of the list
containing the threshold values sets the number of particles which the formula takes into account.
If a custom formula is used, that has to be added in the steering file. Then it will be parsed by the
parser and integrated in the generated code. Custom formula can be usedboth for cuts or to fill
containers in the output file containing particular user-defined values. Inthe case study presented
in Section 5 more details will be shown on how to implement a physics analysis in WATCHMAN.

5. Case study example: how to implement a SUSY-related analysis

We present here a short example of implementation of a physics analysis with the WATCHMAN

analysis code generator. We will use the Delphes [3] interface providedwith the framework, and
we will implement a cut-based analysis aimed to discover evidences of Supersymmetry (SUSY) [8]
at LHC energy, with several physics channels. We skip here the set-upphase; instructions about it

7

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

can be found on the Wiki page of the project [1]. Instead let’s look at how to implement a physics
analysis in the steering file. Let’s say we want to analyze a certain decay ofa SUSY particle.
We start by defining a channel selecting certain particles with certain properties: for example we
want to select 3 hadronic jets plus one lepton plus missing transverse energy, and we want to apply
certain cuts to the physical properties of those objects (like the transversemomentumPT), or of
the whole event (like the sphericity2 or the effective massMe f f

3). In the steering file the user has
just to define those cuts in a text-like way, as shown in Listing 1. As the readercan see Python
dictionaries are used to contain the definitions for each channel and for each cut; but besides some
extra parenthesis, the user settings appear mainly as plain text. The definitionof a channel is
composed by a label defining the channel (“3j0lepMediumCuts” in the listing), by a set of cuts
used for selecting objects inside data before using them for the physics selection over the event
(“objSelection”) and a set of sorted cuts for the event selection (“cuts”), which are actually
those more related to the physics which we want to discover. In the example channel all the cuts but
one use built-in formulas provided by WATCHMAN; only the last cut, (“5:’meff’”) uses a custom
user-defined formula: the flag “custom” is set to “True” and the formula is provided by the user in
the same steering file, as shown in Listing 2. In that listing one can see how the containers store the
physics objects from data: all the containers whose names are defined in the modular interface (cfr.
Section 3) are taken into account by the “Parser” and the code to make themavailable to the user
code is generated. Thus in the end the user can define formulas where she/he can loop easily over
all the physics objects containers, looping over “candidates”. Other not-particle-like objects are
accessible via another container called “collections” . Moreover the same formula can be used
both for cuts, as in the example of Listing 1, or to fill containers in the output file.

6. The output file containing final results: the WATCH M AN Ntuple.

A characteristic of WATCHMAN is that the output file contains the results for all the analyses
defined in the steering file. That means that common objects belonging to different analyses (let’s
think of common particles like muons, jets or electrons) are stored only once for all the analyses,
and they are merely flagged according to the specific analysis they belong.Each physical quantity
is then computed with the right subset of particles which satisfy the requirements defined by the
user for a specific analysis.

WATCHMAN accepts also a list of steering files, and it builds a unique analysis code to berun
on data. Thus people within a working group can develop their own analysisseparately, which then
can be automatically combined with the others and run together. In this case the output file will
contain the results from all the analyses defined in all the steering files.

An important work was done to find an effective way to have independentanalyses, while
assuring a lightweight output file. To reach this goal an attentive flagging mechanism of particles
and events has been set up, which make possible to share objects among analyses while avoiding
the storage of redundant information. A more detailed explanation follows.

2Sphericityis a measure of how spherical an event is, i.e. of how spherical is the spatial distribution of objects
belonging to the event (like jets, leptons, MET).

3Theeffective mass Me f f is defined as the sum of the transverse momentumpT of the selected particles (like jets
and leptons) and the missing transverse energyMET

8

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

channels = {

’3j0lepMediumCuts’:{
’channel’: ’ljjjv’,

’objSelection’: {’muon’:{’ptMin’: 20.*Units.GeV},
’electron’:{’ptMin’: 20.*Units.GeV},
’photon’:{’applyOverlapRemoval’: False},
’tau’:{’applyOverlapRemoval’: False},
},

’cuts’: { 1: { ’label’: ’leptonPtCutsExclusive’,
’value’: [20*Units.GeV]},

2: { ’label’: ’jetPtCuts’,
’value’: [100*Units.GeV, 40*Units.GeV,

40*Units.GeV], },
3: { ’label’: ’jetPtVeto’,

’value’: [40*Units.GeV] },
4: { ’label’: ’missingEtCut’,

’value’: 80*Units.GeV, },
5: { ’label’: ’meff’,

’value’: 100*Units.GeV,
’formula’: ’meff3JetsMetLeps’,
’custom’: True },

},
},

}

Listing 1: Example of physics analysis implementation in the steering file.

Figure 5 shows how the “ObjSelection” branch in the output file is filled for particle-like
objects. In this example we consider the jet collection. Let us assume that we have three object
selection definitions: “Default”, “ TauSelec” and “MyChan”. “ Default” is used when the user
does not define an object selection for an analysis; the other two are custom definitions, specified
by the user in the steering file, and in this example they are used for two other different analy-
ses. Hence three flags for the three object selection definitions are created; and those flags are
stored in the output file, in the “objSelectionMap” vector contained in the “InfoTree” ROOT
TTree object. The selection flags for particles (here for the jet collection) are filled according to
the position in the “objSelectionMap”: if the physical properties of a jet satisfy the selection
cuts defined for a specific object selection, a “1” is stored inside the “jetObjSelection” at the
corresponding position; otherwise a “0” is stored.

In a similar way the events are flagged according to the analyses they belong. The “channel”
branch is a vector of strings, filled with the analysis name, each time an event has the characteristics
to satisfy the event selection of a particular analysis. In this way the scan over the events belonging
to a specific analysis is very easy: it’s only matter of specifying a flag. The events are stored only
once, even if they belong to several analyses.

In Figure 6 a distribution of the “channels” branch is shown, where all the analyses specified
in the example steering file, shipped with WATCHMAN, are visible. The plot is related to the same
SUSY analysis example presented in section 5, but here we consider all theanalyses defined in the
steering file: 10 SUSY-like analyses, with different settings, i.e. different object and event selection
cuts. Each event can satisfy the requirements of one or more analyses, thus in the output file we

9

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

Default

154 128 85 80 71 54 11

1

1

1

1

1

1

1

0

1

0

0

0

0

1

1

0

1

0

0

0

0

TauSelec MyChan InfoTree :: objSelectionMap

jet4mom.pt()
vector < TLorentzVector >

jetObjSelection
vector < vector < string > >

Default

TauSelec

MyChan

0 1 2The position in the
objSelectionMap vector

corresponds to the
position in the

jetObjSelection vector

In this case the 3rd jet did not pass the cuts in the TauSelec object selection, and
a 0 was put in the corresponding place inside the jetObjSel vector

In this case the 7th jet did not pass any object selection,
so 0 has been put in all entries of the vector

Figure 5: How theObjSelection branch is filled for particle-like objects.

Sliced Histo_hTotal
Entries 10
Mean 6.413
RMS 3.197

1lep 1lepDefCut

2j0lep
3j0lep

3j0lepMediumCuts

3j1lepMediumCutsMTBigger100GeV

3j1lepMediumCutsMTSmaller100GeV

4j0lepCSC
4j1lep

TestOnlyJets

nu
m

be
r

of
 e

ve
nt

s

-210

-110

1

10

210

310

410

510

Sliced Histo_hTotal
Entries 10
Mean 6.413
RMS 3.197

MSSM_gogo_pythia_incl

MSSM_gosq_pythia_incl

MSSM_sqsq_pythia_incl

ttbar0j

ttbar1j

ttbar2j

ttbar3j

ttbar4j

w2j

w3j

w4j

Sliced Histo - All 10 channelsDistribution of the events according to the analyses whose requirements they satisfy Data Samples

10 analyses defined by the user, 10 output flags

Figure 6: Example of a plot of the “channels” container from the output file, after having run the code
generated by WATCHMAN on different data samples. In this example the user defined 10SUSY-like analy-
ses, with different object selection and event selection cuts; and events passing the selection cuts defined in
those 10 analyses have been flagged according to them.

10

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

##--- User-Defined Formula
userFormula = {
Meff formula: Highest Pt 4 Jets + MET + All Leptons
’meff’: {
’position’:3,
’formula’:
"""
meff = 0.
if len(candidates[’jet’]) < 3: return meff
for i,jet in enumerate(candidates[’jet’]):

if i >= 3: break
meff += getVal(candidates[’jet’][i], ’Pt’)
pass

for i,el in enumerate(candidates[’electron’]):
meff += getVal(candidates[’electron’][i], ’Pt’)
pass

for i,mu in enumerate(candidates[’muon’]):
meff += getVal(candidates[’muon’][i], ’Pt’)
pass

meff += MET_corrected(candidates)
return meff
"""},
}

Listing 2: Example of custom user-defined formula to be used for cuts or to fill container in the
output file.

will find – according to the example which we are considering – the events flagged according to
the 10 analyses.

As already said, the user can define custom formulas to compute interesting quantities. This
custom information can be stored in the output file, automatically computed with the right subset
of selected particles, and flagged as any other object.

7. Conclusions

WATCHMAN presents and implements a new idea in the HEP field, the usage of Computer
Aided Software Engineering to build reliable, easy to maintain and easy to validate data analysis
code.

WATCHMAN is an analysis code construction kit, with which it’s possible to handle many
analyses at the same time and to generate the actual complete code, ready to berun. The framework
also takes care of the specific data format setup, relieving the user of the need of learning the details
of it. And it can be expanded with modular interfaces to work with new formats.

WATCHMAN is a new open-source Python project under continuous development, withan
already first stable release; it has a small community of active users and it has already been used
with success to analyze data for some scientific notes and contributions at LHC (among the public
ones, see for example [13] and [12]).

Acknowledgements

We would like to thank our colleagues in the Freiburg group who have contributed to the

11

WatchMan Project - CASE applied to HEP Analysis Code Building for LHC Riccardo Maria Bianchi

success of the package. In particular Florian Ahles, Asen Christov, Debra Lumb, Jan Erik Sunder-
mann for their contributions to the ATLAS ESD/AOD data format interface; and Janet Dietrich,
Michael Rammensee, Zuzana Rurikova and Kathrin Störig for their extensive tests and for their
suggestions. And many thanks also to others who contributed with suggestions, comments, hints
or criticisms to the development of this package.

References

[1] “WATCHMAN – An highly automated Analysis Code Generator”,
https://twiki.cern.ch/twiki/bin/view/Main/WatchMan.

[2] R.M. Bianchi, R. Brunelière, “WATCHMAN Project – An automated analysis code generator for High
Energy Physics data analysis in the LHC era. ApplyingCASE to HEPanalysis”, (In preparation. It
will be linked from theWATCHMAN website).

[3] “ Delphes – A framework for fast simulation of a generic collider experiment”,
http://projects.hepforge.org/delphes/.

[4] “ WorldwideLHC Computing Grid (WLCG)”, http://lcg.web.cern.ch/LCG/ and
http://public.web.cern.ch/public/en/Spotlight/SpotlightGrid-en.html.

[5] “ ThePANDA Production and Distributed Analysis System”,
https://twiki.cern.ch/twiki/bin/view/Atlas/Panda.

[6] “ CASE – Computer-aided software engineering”,
http://en.wikipedia.org/wiki/Computer-aided_software_engineering

[7] R.M. Bianchi, R. Brunelière, S. Caron, “ATLASWATCHMAN – An automated Analysis Code
Generator, a D3PD Maker and a Jobs Bookkeeper”,
https://twiki.cern.ch/twiki/bin/view/Main/ATLASWatchMan.

[8] S.P. Martin, “A supersymmetry primer’’, pp. 88–94,
http://arxiv.org/pdf/hep-ph/9709356.

[9] W. Lavrijsen,“PyROOT – A Python-ROOT Bridge”, http:
//root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter

[10] “ROOT – An Object-Oriented Data Analysis Framework”
http://root.cern.ch/drupal/

[11] “SFrame – A ROOT data analysis framework“
http://sourceforge.net/projects/sframe/

[12] “ATLAS Plots on ECM Dependence of Physics Reach”
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

AtlasResultsEcmDependence. WatchMan was used to analyze data in order to produce the
plots of the Supersymmetry discovery reach.

[13] “Prospects for Supersymmetry and Universal Extra Dimensions discovery based on inclusive
searches at a 10 TeV centre-of-mass energy with the ATLAS detector”
http://cdsweb.cern.ch/record/1191916

12

