
P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
2

Parallel versions of the symbolic manipulation
system FORM

M. Tentyukov∗

Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), D-76128
Karlsruhe, Germany
E-mail: tentukov@particle.uni-karlsruhe.de

J.A.M. Vermaseren
Nikhef Science Park 105 1098 XG, Amsterdam
E-mail:t68@nikhef.nl

J. Vollinga
Nikhef Science Park 105 1098 XG, Amsterdam
E-mail:jensv@nikhef.nl

The symbolic manipulation program FORM is specialized to handle very large algebraic expres-
sions. Some specific features of its internal structure makeFORM very well suited for paralleliza-
tion.

We have now two parallel versions of FORM, one is based on POSIX threads and is optimal for

modern multicore computers while another one uses MPI and can be used to parallelize FORM

on clusters and Massive Parallel Processing systems. Most existing FORM programs will be able

to take advantage of the parallel execution without the needfor modifications.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
February 22-27, 2010
Jaipur, India

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
2

Parallel FORM M. Tentyukov

1. Introduction

The symbolic manipulation system FORM [1] which is available already more than 20 years,
is specialized to handle very large algebraic expressions of billions of termsin an efficient and
reliable way. It is widely used, in particular in the framework of perturbative Quantum Field
Theory, where sometimes hundreds of thousands of Feynman diagrams have to be computed; most
of the spectacular calculations of refs [2, 3] would hardly have been possible with other available
systems. However, the abilities of FORM are also quite useful in other fields of science where the
manipulation of huge expressions is necessary.

Parallelization is one of the most efficient ways to increase performance. Some internal
specifics [4] make FORM very well suitable for parallelization so the idea to parallelize FORM
is quite natural.

2. General concepts and models in use

The general concept of FORM parallelization is as follows [4, 5, 6]: upon the startup, the
program launches amasterand severalworkers. FORM treats each expression individually, which
allows the master to split incoming expressions into independent chunks. Each chunk is processed
by workers in parallel, and then the master collects the results.

At present, we have two different models [5, 6]: inParFORM [4] the master and workers are
independent processes communicating via MPI1 and inTFORM [6] master and workers are separate
threads2 of a multithreaded process.

Both models require almost no special efforts for parallel programming, allFORM programs
may be executed in parallel without any changings. The user may give FORM some hints of how to
parallelize some things better; these hints are simply ignored by the sequential version of FORM.

Since TFORM uses common address space, it is runnable only on SMP computers. On the
other hand, sometimes it permits more efficient parallelization, and it does not depend on MPI
which make it much easier for deployment. ParFORM can be used not only onSMP computers
but also in clusters and Massive Parallel Processors (MPP).

3. Performance

Both ParFORM and TFORM demonstrate approximately the same speedup [5, 6]. Here we
discuss TFORM running the Multiple Zeta Value program [7] on the computer “qftquad5” at DESY.
The computer has 96 GB of main memory and 8 independent CPU cores; the effective number of
CPU cores is 16 due to hyperthreading. The results are given in Fig. 1.

For reference, the run with FORM (the sequential version) took 57078 sec.
We see three regions: first, the speedup is almost linear up to 8 workers; second, the speedup

is also almost linear in the range of 8-16 workers but with much less slope, and after 16 workers
we observe a saturation. When we looked at the total amount of CPU time used, Fig.2, we see the
total CPU time is more or less constant up to 8 workers and above 16 workers. In the range of

1A Message Passing Interface, see http://www.mpi-forum.org/
2TFORM uses POSIX threads, or pthreads

2

P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
2

Parallel FORM M. Tentyukov

8000
10000

30000

40000
50000

2 3 4 8 10 20 30

T
im

e
(s

)

Workers

Figure 1: Running times of the Multiple Zeta Value TFORM program. The runs were for weight 23, up to
depth 7.

20000
40000

200000

2 3 4 5 6 7 8 10 20 30

C
P

U
 ti

m
e

(s
)

Workers

Figure 2: Total CPU time of the Multiple Zeta Value TFORM program.

8-16 workers however it increases steadily. This is responsible for theslower decline in real time in
the first graph, because the pseudo efficiency (total CPU time divided byreal time and divided by
number of workers) remains more or less the same in this range. This is behaviour that is typical
for hyperthreading. The total amount of work that can be obtained fromthis computer is about 9.5
times the amount that can be obtained from a single core.

The analysis of the data reveals also that TFORM needs about 20% overhead for the Multiple
Zeta Program. This is more than for programs like Mincer. This may be due to theuse of brackets
from the master expression which may involve copious use of locks. This is still not completely
clear though. The result is that for 8 workers the pseudo speedup (total CPU time divided by
realtime) is 7.63 while the real speedup (compared to the FORM run) is 6.22. Ofcourse, this is
still very good. The maximum improvement we obtained was 7.45 for a run with 17workers.

4. Recent development

Over the past years parallel FORM versions have picked up a number ofnew features:

• Dollar variables. By default, both ParFORM and TFORM switch into the sequential mode
for each module which gives dollar variables a value during execution. But there are common

3

P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
2

Parallel FORM M. Tentyukov

cases when some dollar variables obtained from each term in each chunk can be processed in
parallel in order to get a minimum value, a maximum, or a sum of results. Also, sometimes
at the end of the processing of a term the value of the dollar variable is not important at all.
Hence new module options have been implemented to help FORM to process thesevariables
in parallel:minimum, maximum, sum andlocal.

• Right-hand side expressions (RHS). This is not a problem for TFORM since all threads
work with the same file system while it is a big problem for ParFORM since the expres-
sion may be situated in a scratch file but different nodes may have independent scratch file
systems. For a long time ParFORM forced evaluation of modules with RHS expressions in
sequential mode. Now ParFORM is able to perform RHS expressions in a real parallel mode.

• InParallel statement. A new statement was inplemented,inparallel;. This statement
allows the execution of complete expressions in a single worker simultaneously. This is
really useful when there are many short expressions, sometimes it givesa significant increase
in efficiency.

In Fig. 3 we summarize the speedup curves for the TFORM running the MZV program on 8 CPU
cores computer when various features are switched off/on. The legendis the following:

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 1 2 3 4 5 6 7

Sp
ee

du
p

Number of workers

All par
RHSseq
NoDol
NoInPar
NoInpar,NoDol
RHSseq,NoInPar

Figure 3: Results of the MZV program runs with various features switched off/on. The runs were for
weight 20, up to depth 8.

• All par – all above mentioned features are implemented;

• RHSseq – modules with RHS expressions are forced into the sequential mode;

• NoDol – modules with dollar variables are forced into the sequential mode;

• NoInar – no InParallel statements;

• NoInPar,NoDol – modules with dollar variables are forced into the sequential mode, no
InParallel statements;

• RHSseq,NoInPar modules with RHS expressions are forced into the sequential mode, no
InParallel statements.

4

P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
2

Parallel FORM M. Tentyukov

As we can see, all these new features are really important.

If FORM programs have to run for a long time the reliability of the hardware or of the software
infrastructure becomes a critical issue. Program termination due to unforeseen failures may waste
days or weeks of invested execution time. The checkpoint mechanism was introduced to protect
long running FORM programs as good as possible from such accidental interruptions. With acti-
vated checkpoints FORM will save its internal state and data from time to time on the hard disk.
This data then allows a recovery from a crash. The parallel FORM versions support this mechanism
as well.

By default, data are saved at the end of each module. Usually this is too expensive. Optionally,
the data may be saved only after some time interval. The scalability for ParFORM running BAICER
N=16 for different intervals between checkpoints is depicted in Fig. 4. Asone can see, even very

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 2 3 4 5 6 7

Sp
ee

du
p

Number of workers

No chck
30 min
10 min

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 1 2 3 4 5 6 7

T
im

e
(s

)

Number of workers

10 min
30 min
No chck

Figure 4: Absolute time and speedup curves for the test program BAICERwithout checkpoint mechanism
(“NoChck”), checkpoints every 30 minutes (“30 min”) and every 10 minutes(“10 min”).

frequent checkpoints do not affect performance much.
Acknowledgments.This work was supported in part by DFG through SBF/TR 9 and by the

FOM foundation.

References

[1] J. A. M. Vermaseren, [arXiv:math-ph/0010025];
J. A. M. Vermaseren, Nucl. Phys. Proc. Suppl.183 (2008) 19, [arXiv:0806.4080 [hep-ph]].

[2] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B688 (2004) 101;
A. Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Phys. B691 (2004) 129;
J. Blumlein and J. A. M. Vermaseren, Phys. Lett. B606 (2005) 130;
Y. Schröder and A. Vuorinen, JHEP0506 (2005) 051;
J. A. M. Vermaseren, A. Vogt and S. Moch, Nucl. Phys. B724 (2005) 3;
R. Bonciani and A. Ferroglia, Phys. Rev. D72 (2005) 056004;
Y. Schröder and M. Steinhauser, JHEP0601 (2006) 051;
K. G. Chetyrkin, J. H. Kuhn and C. Sturm, Nucl. Phys. B744 (2006) 121;
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Nucl.Phys. B740 (2006) 138.

[3] A. Retey and J.A.M. Vermaseren, Nucl. Phys.B604 (2001) 281;
P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Phys. Rev. Lett.88 (2002) 012001;

5

P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
2

Parallel FORM M. Tentyukov

P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Phys. Lett.B559 (2003) 245;
P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Phys. Rev.D67 (2003) 074026;
P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Eur. Phys. J.C33 (2004) 650;
S. Bekavac, hep-ph/0505174;
P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett.95 (2005) 012003;
P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett.96 (2006) 012003;
P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett.101 (2008) 012002;
A. Kotikov, J.H. Kuhn and O. Veretin, Nucl. Phys.B788 (2008) 47;
P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett.104 (2010) 132004.

[4] D. Fliegneret al, [arXiv:hep-ph/9906426];
D. Fliegneret al, [arXiv:hep-ph/0007221]. M. Tentyukovet al, “Parallel Version of the Symbolic
Manipulation Program FORM”, in: V.G. Ganzhaet al (Eds.), Proceedings of the CASC 2004,
Technische Universität München, Garching, Germany; [arXiv:cs.SC/0407066];
M. Tentyukovet al, Nucl. Instrum. Meth. A559 (2006) 2248.

[5] M. Tentyukov and J.A.M.Vermaseren, PoS (ACAT08) 119.

[6] M. Tentyukov and J.A.M. Vermaseren, doi:10.1016/j.cpc.2010.04.009, [arXiv:hep-ph/0702279].

[7] J. Blumlein, D.J. Broadhurst and J.A.M. Vermaseren, [arXiv:0907.2557].

6

