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1. Introduction

Originally sector decomposition was used as a tool for analyzing the gmwves and prov-
ing theorems on renormalization and asymptotic expansions of Feynman istgfa, [3,[4[5].
After [f], the sector decomposition approach has become an efficidribtommerical evaluating
Feynman integrals (see Rdf] [7] for a recent review). At presente e two public codes per-
forming the sector decompositiol} [8] arfidl [9]. The latter one was developttk present authors;
it is namedFl ESTA which stands for “Feynman Integral Evaluation by a Sector decomposiTion
Approach”. Recentlyfl ESTA was greatly improved in various aspedtd [10].

During the last yeaFlI ESTA was widely used, some of application are listed[iq [11].[11 [12]
we usedF| ESTA in order to confirm numerically the recent analytic resultsrf@ster integrals
(MI’s) for four-loop massless propagators which recently were ditaljy evaluated in[[13]. Here
we provide some more numerical results for extra orders in epsilon exparfer these MI’s.

2. Theoretical background and software structure

FI ESTA calculates Feynman integrals with the sector decomposition approach. After p
forming Dirac and Lorentz algebra one is left with a scalar dimensionallylaggad Feynman
integral [1#]F (ay,...,an) [ %‘%, whered = 4 — 2¢ is the space-time dimensioa, are
indices,| is the number of loops and/HEn are propagators We work in Minkowski space where
the standard propagators are the fornn® — p? —i0). Other propagators are permitted, dde [9].
Substltutlnga.v ea"/z fo daa®1e Ea after usual trlcks|]9] performing the decomposition of
the mtegratlon reglon into the so- calledmary sectors[. and maklng a variable replacement,

—1\ yA-(+1d/2
one results in a linear combination ofmtegrﬁj’s dx ...dxy <|‘|J 1x )W

If the functlonsW had no singularities ia, one would be able to perform the expansion
in € and perform the numerical integration afterwards. However, in geneehas to resolve
the singularities first. Thus, one starts a process the sector decompositiog o end with a
sum of similar expressions, but with newlfunctidU\sandF which have no singularities (all the
singularities are now due to the p.ﬂﬁ‘zlx’?"*l). The way sector decomposition is performed is
called asector decomposition strategff, B, [9]) and is an essential part of the algorithm (let us
also mention a geometrical approach to sector decompositipn [15] which és ctmplicated in
implementation as a strategy on a computer but promises to be the optimal one).

After the sector decomposition one resolves the singularities by evaluatiriigstheerms of
the Taylor series: in those terms one integration is taken analytically. Aftdswhes-expansion
can be performed and finally one can do the numerical integration.

FI ESTA is written in Mat hemat i ca [[L7] and C. The user is not supposed to use the C
part directly as it is launched frorivat hemat i ca via the Mathlink protocol in order to per-
form a numerical integration. To ruRl ESTA, the user has to load thHe ESTA package into
Mat henmati ca 6 or 7. In order to evaluate a Feynman integral one has to use the command
SDEval uat e[ UF[ | oop_nonent a, propagat or s, subst], i ndi ces, order], where
| oop_nonent ais alist of all loop momentegyr opagat or s is a list of all propagatorsubst
is a list of substitutions for external momenta, masses and other valuexaraple,
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SDEval uat e[ UF[ { k}, { - k2, - (k+p1) 2, - (k+p1+p2) 2, - (k+p1+p2+pa) %,
{pf—0, p5—0, p; =0, p1 p2—-5/2,p2 Pa—-t/2,p1 pa—-(stt)/2,
s—-3,t—-1}], {1,1,1,1},0]

evaluats the massless on-shell box diagram with Mandelstam variabldde®gtBaand—1.

3. Numerical resultsfor four-loop massless propagators

O & O & &

Me1, €1 Mes, €° Me3, €° Msy, €1 My, €
Mao, €1 Maa, €° Mys, € Mza, €3 M3s, €2
2
Mze, € Ms, & My, € No, €

Figure 1. Mg1—Mys: the thirteen complicated four-loop master integrals adiog to ]. The two Ml's
Ms, andMgy3 can be identically expressed through the three-loop noaplisil No.

In [[Lg] a full set of four-loop massless propagator-like MI's was iifexd. There are 28 inde-
pendent MI's. Analytical results for these integrals were obtainefl ih [IBe most complicated
Ml's are demonstrated on FiE. EM after Mj; stands for the maximal term isrexpansion oi;;
which one needs to know for evaluation of the contribution of the integraleditial result for a
four-loop integral after reduction is done, sgd [13]. Two of the comggitategrals ¥z andMsy)
are related by a simple factor with the three-loopMN4I[[L2] so it is enough to evaluate remaining
eleven complicated MI'dg1—Mz3g as well as first three terms of tlseexpansion ofNg.

We calculated them (fag? = —1) usingFI ESTA with the Cuba[[Lf] Vegas integrator and
1 500 000 sampling points for integration. Our results alongside with thespmmneling analytical
expressions (transformed to the numerical form) fronh [13] look like fodfow

Mzs €% 0.08333+ 0 (0.08333)g3: 0.91666 7+ 0.000018 (0.91666)% 2 5.64251+ 0.00022
(5.6425109)g1: 27.64134+ 0.00077 (27.6412581}°: 98.638+ 0.0034 (98.637928™:
342.736+ 0.012 (342.7349920k2: 857.88+ 0.048 (857.8735165k3: 2659.84+ 0.19
(2659.825402)c*: 4344.28+ 0.75 (unknown)g®: 17483.1+ 5.7 (unknown).

Mss £72: 0.601028+ 0.000012 (0.601028%1: 7.4231+ 0.00024 (7.423055%%: 44.9127+
0.00073 (44.91255k": 217.023+ 0.0037 (217.0209)k2: 780.436+ 0.013 (780.432)¢3:
2678.13+ 0.053 (unknown)g*: 7195.9+ 0.3 (unknown).

1please, note that the overall normalization usedFbESTA is differentfrom the one employed by the authors of

23], see[[z).
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Mas €1: 5.184645+ 0.000042 (5.1846388}0: 38.8948+ 0.00039 (38.8946741}1: 240.069
+ 0.0019 (240.0684359§2: 948.623+ 0.0091 (unknown)e3: 3679.7Z 0.06 (unknown).

My1 £71: 20.73860+ 0.00023(20.7385551}: 102.033+ 0.003 (102.0326759): 761.60+
0.011 (761.5969858%2: 2326.18+ 0.062 (unknown)g®: 12273.6:+ 0.4 (unknown).

Mgz €711 20.738604 0.00024 (20.7385551%0: 145.381+ 0.0029 (145.3808999%': 985.91
+ 0.014 (985.9082306)2: 3930.65+ 0.076 (unknown)g®: 17486.6+ 0.6 (unknown).

Mas €% 55.58537+ 0.00031 (55.5852539%1: 175.325+ 0.004 (unknown)g?: 1496.52+ 0.02

Mys €% 52.0181+ 0.0003 (52.0178687k!: 175.50+ 0.0036 (175.496447k2: 1475.272+
0.0098 (unknown)g3: 2623.5+ 0.1 (unknown).

Ms; £1: -5.184651+ 0.000048 (-5.184638%": -32.09624 0.00057 (-32.09614k!: -91.158
+ 0.0052 (-91.1614)2: 119.06-=+ 0.043 (unknown)g3: 2768.6+ 0.45 (unknown).

No £°: 20.73857+ 0.00026 (20.7385551%: 190.60+ 0.0023 (190.600238%2: 1049.20+
0.014 (1049.194196)%°: 4423.84+ 0.072 (unknown)g*: 16028.8+ 0.5 (unknown).

Mer €1 -10.36931+ 0.00006 (-10.3692776)% -70.990+ 0.0011 (-70.99081719%%: -
21.650+ 0.013 (-21.663005k2: 2832.69+ 0.096 (unknown).

Mo £1: -10.36933+ 0.00006 (-10.36927)°: -58.6187+ 0.0013(-58.6210)s!: 244.681+
0.015 (unknown).

Mgz £1: -5.18467+ 0.000042 (-5.184638%: 14.39894 0.00081 (14.39739%k!: 739.979+
0.0099 (unknown).

Here for each Ml we provide our numerical result for coefficients-ekpansion in comparison (in
parentheses) with the known frofh [13] analiycal results (if any). Asaresee, our calculations
reproduce the result of [L3] with 3-4 correct digits. The extra terms irtepansion of each Ml
which are currently unavailable analytically but are necessary forddivg-loop calculations.

4. Conclusion

Usually, analytical evaluation of multiloop Ml is a kind of art. It requires a Ib¢fiorts (and
CPU time). In many situations, independent checkup is hardly any possibéasonable time.
That is why the simple in use tools for numerical evaluation Kk&STA are important.
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