

PS

Physics Beyond The (Minimal Supersymmetric) Standard Model

Thorsten Ohl*

Institute for Theoretical Physics and Astrophysics, University of Würzburg *E-mail*: ohl@physik.uni-wuerzburg.de

Third Linear Collider Physics School 2009 - LCPS2009 August 17 - 23 2009 Ambleside, UK

*Speaker.

Perturbative Up To the Terascale (but not much further)

Extra Dimensions Little Higgs / Gauge-Higgs Unification Higgsless Models (a. k. a. (E)TC) The Sgaugino Σ^0 LHC

Model Independent EFT Approach

 $VV \rightarrow VV$ Below Threshold

Who Ordered That?

1

► all collider experiments are compatible with a renormalization of some 18 parameters of the dim ≤ 4 operators invariant under

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

standard model

- the SU(2)_L × U(1)_Y gauge symmetry appears to be spontaneously broken and vector bosons get their masses by eating a Goldstone boson, i. e. from a Higgs mechanism
- all current data are compatible with an elementary Higgs boson as the source of the Goldstone bosons
- if and only if interpreted as a fundamental renormalizable field theory, the data strongly favor a light Higgs boson

4

Introduction What do most of us expect?

CP-violation

observation of lepton flavor violation beyond v-mixing

- do we owe our existence to leptogenesis?
- is there a seesaw mechanism?
- are there Majorana masses?

- Occam's razor might be dull: BSM physics can be a combination some or all of the above
 - nature is often more messy than we hope
 - : be prepared!
- there are examples for "strange" stuff that doesn't fit nicely with (most of) our orthodoxy:
 - Unparticles
 - did anybody anticipate these propagators?
 - Noncommutativity
 - Lorentz invariance is hardwired in our brains ...
- nothing but the minimal SM plus an ad-hoc WIMP CDM candidate would be the biggest surprise of all

- for many (most?) SUSY is already contained in release 2.0 of the Standard Model which will be launched after a few 10 fb⁻¹ of LHC collisions have been analyzed in 201x
- very well motivated and well studied extension of the SM
- ► ∃ rich set of tools (dedicated and multi purpose) available often very well tested in real applications
- I multiple independent cross checked implementations of constrained versions of the MSSM, extensions in the works
- ∵ perturbatively renormalizable field theory allows clean factorization of tasks related to different scales, interfaces available, in particular SLHAn
 - couplings from spectrum generators
 - scattering amplitudes from diagrammatic tools
- \therefore all-in-one packages for LO event samples feasible (new model \leq MA-thesis)

- just demand that
 - $\rho \approx 1$ naturally
 - FCNCs are naturally suppressed
- Glashow-Weinberg Criterion ['77] satisfied by 2HDM, w/mass eigenstates in reach of collider experiments
- popular source of CP-violation
 - many phenomenological studies
 - implemented in most (all?) all-in-one packages

WÜRZBURG Nonpert

- extra dimensions have been with us for a long, long time [Kaluza, Klein '21, '26] and string theory made them a necessity at the Planck scale
 Toreceals extra dimensions became representable in the late '00s
- Terascale extra dimensions became respectable in the late '90s [ADD '98, RS '99] (see also [Antoniadis '90])
- XDs play many (sometimes incompatible) rôles in Terascale particle physics
 - real XD:
 - can solve the hierarchy problem by a Terascale Planck mass
 - introduce infinite Kaluza-Klein towers
 - allow symmetry breaking by boundary conditions
 - unitarize VV scattering by exchange of KK partners
 - (ab)use the Xtra components of gauge fields as naturally light scalars
 - metaphorical XD: symmetries in deconstructed dimensions
 - holographical XD: powerful new description of strongly interacting models using the (conjectured!) AdS/CFT correspondence

• orbifolding: identify points in the XD, e.g. $\Phi(x, y) = \Phi(x, 2\pi - y)$

- "odd" modes are projected out
- fixed points (e.g. $y = 0, \pi$) correspond to branes
- : boundary conditions at the branes ($f_n(0) = 0, \partial_z f_n(0) = 0$, etc.

Very good agreement with current WMAP data possible

 tree level contributions to associated heavy quark and LSP pair production with a gg initial state.

- commercial break:
 - fully automated Monte Carlo event generator generator (emphasis on BSM physics, w/and w/o SUSY)

http://whizard.event-generator.org (Or hepforge.org)

- α-Version of Version 2 recently completed (still working out Fortran 2003 compiler kinks)
- hadron colliders no longer an afterthought (Version 1 sometimes revealed its TESLA/ILC origins)
- Kinematic cuts

Variable		II.1	II.2	II.3
$P_{T}(q), P_{T}(\overline{q})$	-	> 100 GeV	> 300 GeV	> 100 GeV
$\Delta \phi(q, \overline{q})$	-	-	-	[0, 140°]

II.3 suppress SM background with back-to-back $\mathrm{t}\bar{\mathrm{t}}$ pairs

UNIVERSITÄT WÜRZBURG

Missing energy in neutralino LSP pair production in association with top pairs (SM background: vvtt)):

Model Independent EFT Approach

- Most conservative approach:
 - use only observed degrees of freedom
 - implement observed exact and broken symmetries
 - :. effective chiral Lagrangian for $SU_L(2) \times SU_R(2) \rightarrow SU_C(2)$ breaking

$$\mathcal{L} = \frac{1}{4} \operatorname{tr} \left([D_{\mu}, D_{\nu}] [D^{\mu}, D^{\nu}] \right) + \frac{\nu_{F}^{2}}{2} \operatorname{tr} \left(D_{\mu} U D^{\mu} U \right) + \dots$$

- dependence of $VV \to VV$ and $VV \to t\bar{t}$ scattering on dim-4 operators

studied for ILC ($e^+e^- \rightarrow 6f/8f$) and LHC ($pp \rightarrow 6f/8f$)

 $\begin{array}{c|c} \mbox{Th. Ohl (Würzburg)} & \mbox{BSM} & \mbox{Ambleside '09} & \mbox{29} \\ \hline \mbox{UNIVERSITÄT} & \mbox{EFT} & \mbox{VV} \rightarrow \mbox{VV} \mbox{Below Threshold} \\ \hline \end{array}$

custodial SU(2)_c conserving:

$$\begin{split} \mathcal{L}_4 &= \alpha_4 \, \operatorname{tr} \left[V_{\mu} V_{\nu} \right] \, \operatorname{tr} \left[V^{\mu} V^{\nu} \right] \\ \mathcal{L}_5 &= \alpha_5 \, \operatorname{tr} \left[V_{\mu} V^{\mu} \right] \, \operatorname{tr} \left[V_{\nu} V^{\nu} \right] \end{split}$$

Th. Ohl (Würzburg)

Ambleside '09 30

EFT $VV \rightarrow VV$ Below Threshold

• custodial $SU(2)_c$ violation:

$$\mathcal{L}_6 = \alpha_6 \, \operatorname{tr} \left[V_{\mu} V_{\nu} \right] \operatorname{tr} \left[\mathcal{T} V^{\mu} \right] \operatorname{tr} \left[\mathcal{T} V^{\nu} \right] \\ \mathcal{L}_7 = \alpha_7 \, \operatorname{tr} \left[V_{\mu} V^{\mu} \right] \operatorname{tr} \left[\mathcal{T} V_{\nu} \right] \operatorname{tr} \left[\mathcal{T} V^{\nu} \right]$$

Th. Ohl (Würzburg)

small compared to the resolution of present experiments.

Th. Ohl (Würzburg)

• then $(x_{\mu} * x_{\nu})(x) = x_{\mu}x_{\nu} + \frac{i}{2}\theta_{\mu\nu}$ and in particular

 $[x_{\mu} *, x_{\nu}](x) = (x_{\mu} * x_{\nu})(x) - (x_{\nu} * x_{\mu})(x) = i\theta_{\mu\nu}$

 new interaction vertices among gauge and matter fields from expanding Moyal-Weyl-*-products and Seiberg-Witten-Maps as determined by gauge invariance

$$g(\bar{\psi} * \hat{A} * \hat{\psi})(x) = g\bar{\psi}(x)A(x)\psi(x) + O(\theta)$$

36

WURZBURG Who Ordered That? Noncommutative Space Time

• e.g. at $O(\theta)$ with all momenta outgoing

$$= ig \cdot \frac{i}{2} [(k\theta)_{\mu} \not p + (\theta p)_{\mu} \not k - (k\theta p)\gamma_{\mu}]$$

$$= ig^{2} \cdot \frac{i}{2} \begin{bmatrix} (\theta(k_{1} - k_{2}))_{\mu_{1}} \gamma_{\mu_{2}} - (\theta(k_{1} - k_{2}))_{\mu_{2}} \gamma_{\mu_{1}} \\ -\theta_{\mu_{1}\mu_{2}} (\not k_{1} - \not k_{2}) \end{bmatrix}$$

• canonical NC extension of the SM known to $O(\theta^2)$

- ∵ Light fermions couple very weakly to the Electroweak Symmetry Breaking sector
 - Standard Model Yukawa Couplings

$$\mathcal{L} \supset \frac{m_{f}}{\nu_{F}} H \bar{\psi}_{f} \psi_{f} \Longrightarrow \frac{d\sigma}{d\Phi} (f \bar{f} \rightarrow H) \propto \frac{m_{f}^{2}}{\nu_{F}^{2}}$$

generically in any chiral Effective Field Theory description

$$\mathcal{L} \supset \mathbf{m_f} \bar{\psi}_f \exp\left(i\frac{\Phi}{\nu_F}\right) \psi_f \Longrightarrow \frac{d\sigma}{d\Omega} (f\bar{f} \to \Phi) \propto \frac{\mathbf{m_f^2}}{\nu_F^2}$$

:. cross sections for the direct excitation of the EWSB sector at LHC (u, d) and ILC (e^{\pm}) are strongly suppressed

Facts of Life ... Vector Boson Fusion

- Trick: generate almost real massive gauge bosons (W[±] and Z) with known gauge couplings by bremsstrahlung off light fermions and let them scatter
 - cross section suppressed by additional gauge couplings

$$\left(\frac{\alpha}{\pi}\right)^2 \approx 5 \cdot 10^{-6}$$

but enhanced by

$$\left(\frac{m_{W,Z}}{m_e}\right)^2 \approx 3\cdot 10^9$$

 \bigcirc net gain of $O(10^3)$

drawback: lower energy available in the CMS of the vector bosons, because of soft bremsstrahlung spectrum (see below)

 upper Higgs mass reach of linear collider dominated by Vector Boson Fusion:

UNIVERSITÄT WÜRZBURG

- 1990s: LEP enforced triumph of the minimal standard model
- 2000s: theorists running wild due to lack of supervision from experimentalists: plethora of new and repackaged BSM models
- 2010s: LHC
 - will most of the content of arXiv.org be obsolete soon, or
 - will we have to come up with completely new ideas?
- 2020s: ILC/CLIC: Will the fog be lifted?

Th. Ohl (Würzburg)	BSM	Ambleside '09 45
		0
		\bigcirc
		\bigcirc
		(,)