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We study the NH distribution in a complete sample of 88 AGN selected in the 20-40 keV band

from INTEGRAL/IBIS observations. We find that the fraction of absorbed (NH > 1022 cm−2)

sources is 43% while Compton thick AGN comprise 7% of the sample. While these estimates are

fully compatible with previous soft gamma-ray surveys, they would appear to be in contrast with

results reported from an optically selected sample. This apparent difference can be explained

as being due to a selection bias caused by the reduction in high energy flux in Compton thick

objects rendering them invisible at our sensitivity limit.Taking this into account we estimate that

the fraction of highly absorbed sources is actually in closeagreement with the optically selected

sample. Furthermore we show that the measured fraction of absorbed sources in our sample

decreases from 80% to∼20-30% as a function of redshift with all Compton thick AGN having z

< 0.015. We conclude that in the low redshift bin we are seeing almost the entire AGN population,

from unabsorbed to at least mildly Compton thick objects, while in the total sample we lose the

heavily absorbed ’counterparts’ of distant and therefore dim sources with little or no absorption.

Taking therefore this low z bin as the only one able to providethe ’true’ distribution of absorption

in type 1 and 2 AGN, we estimate the fraction of Compton thick objects to be >24%.
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1. Introduction

The cosmological evolution of the Active Galactic Nuclei (AGN) luminosity function and its
implications on the Cosmic X-ray Background (CXB) is still achallenging issue for extragalac-
tic science. While years ago the study of the cosmological and statistical properties of AGN was
principally limited to the optical or soft X-ray regimes, and therefore dealing essentially with un-
absorbed (type 1) AGN, it is now clear that a complete census of the entire AGN population and
especially for the most obscured objects is the missing ingredient to come close to the true picture.
Indeed the selection and the identification of obscured objects is a difficult task in the optical as
well as in the soft X-ray (up to a few keV) band where hydrogen column densities (NH) of the
order of 1021-1022 cm−2 strongly reduce the flux emitted from the nucleus. However, X-ray ob-
servations below 10 keV have extensively probed the so called Compton thin regime, i.e. column
densities below 1.5× 1024 cm−2 (the inverse of the Thomson cross-section) but still in excess of
the Galactic value in the source direction. The Compton thick regime has been much less sam-
pled either due to the lack of complete spectral coverage and/or all-sky surveys above 10 keV (for
mildly Compton thick sources) or because the entire high energy spectrum is down scattered by
Compton recoil and therefore depressed at all energies (heavily Compton thick sources). Until
now, indirect arguments have been used to probe this regime:the intensity of the iron line at 6.4
keV (equivalent width typically of the order of 1 keV, Matt 1999), the signature of strong Compton
reflection, or the ratio of the observed X-ray luminosity against an isotropic indicator of the source
intensity, often the [OIII]5007 luminosity. However, sometimes iron line and Compton reflection
diagnostics may lead to a wrong classification, caused by a temporary switching off of the primary
continuum (Guainazzi et al. 2005) and not by thick absorption. Furthermore, the [OIII] luminosity
is not always available and/or properly estimated so that the large uncertainties on the LX /L[OIII]

ratios can also lead to a misclassification.
The study of Compton thick AGN is important for various reasons: (i) about 80% of the active
galactic nuclei in the local Universe are obscured (e.g., Maiolino et al. 1998; Risaliti et al. 1999);
(ii) their existence is postulated in all AGN synthesis models of the X-ray background (Gilli et al
2007); (iii) they may constitute an important ingredient for the IR and the sub-mm backgrounds,
where most of the absorbed radiation is re-emitted by dust (Fabian & Iwasawa 1999; Brusa et al.
2001) and (iv) accretion in these objects may contribute to the local black hole mass density (Fabian
& Iwasawa 1999, Marconi et al. 2004).
Because of this interest and despite the limitations so far encountered, a sizable sample of Comp-
ton thick AGN is available for in depth studies (Della Ceca etal. 2008). However, this sample is
by no means complete, properly selected and reliable in relation to the column density estimates.
It is clear that for an unbiased census of Compton thick sources sensitive soft gamma-ray sur-
veys/observations are needed.

2. The importance of hard X-ray surveys and the current scenario

A step forward in the census of Compton thick AGNs, is now provided by Swift/BAT and
INTEGRAL/IBIS which are surveying the sky above 20 keV with asensitivity better than a few
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mCrab and a point source location accuracy of 1-3 arcmin depending on the source strength and
distance (Bird et al. 2007). These two surveys are complementary, not only because they probe
the sky in a different way but also because they can be a check of each other’s results. Together
they will provide the best yet knowledge of the extragalactic sky at gamma-ray energies. Results
obtained so far from these two instruments, point to a percentage of absorbed sources (NH > 1022

cm−2) in the range 50-65%, while the fraction of Compton thick objects is constrained to be< 20%,
likely closer to 10% (see summary table in Ajello 2009). Thispercentage is clearly in contrast with
results from optically selected samples (we will, in the following, refer to the Risaliti et al. 1999
sample) and with that postulated in the synthesis models of the cosmic X-ray background (Gilli et
al. 2007).

3. The INTEGRAL Complete AGN sample

The complete sample of INTEGRAL selected AGN has been extracted from a set of 140 ex-
tragalactic objects detected in the 20-40 keV band and listed in the 3rd IBIS survey (Bird et al.
2007). Most of these objects were already identified as active galaxies in the IBIS catalogue, while
others were subsequently classified as such thanks to follow-up optical spectroscopy.1

From this list, a complete sample has been extracted by meansof the V/Vmax test (Schmidt, 1968)
i.e. assuming that the sample is distributed uniformly in space (and that there is no evolution), it
is possible to test if the sample is complete. The test consists of comparing the volumes contained
within the distances where the sources are observed (V) withthe maximum volumes (Vmax), de-
fined as those within the distance at which each source would be at the limit of detection. If the
sample is not complete, the expected value for<V/Vmax> is less than 0.5, while when complete it
should be equal to 0.5. In the case of the IBIS catalogue, the sky exposure, and therefore the limit-
ing sensitivity is a strong function of position, as is shownin figure 1 (left panel). This can be taken
into consideration by using the Ve/Va variation of the test, introduced by Avni & Bahcall (1980).
Once again the expected mean value m=<Ve/Va> will be 0.5 when the sample is complete.
Figure 1 (right panel) shows the value of<Ve/Va> as a function of limiting sensitivity. It can be
seen that the increasing trend becomes flat above about 5.2σ at which point the ratio has a value of
0.47±0.03, consistent with completeness.
There are 88 objects detected in the 20-40 keV band with a significance higher than this limit and
they form our complete sample of INTEGRAL selected AGN: 46 objects are of type 1 (Seyfert
1-1.5, of which 5 Narrow Line Seyfert 1s) and 33 of type 2 (Seyfert 1.8-2); only 9 Blazars (BL
Lac-QSO) are included in the catalogue. It is worth noting that for all the 88 objects we have class
and redshift. The 2-10 keV flux and NH measurements have been collected from literature for the
well studied objects while XRT/XMM data analysis has been performed for the new INTEGRAL
AGN (IGRJ sources) in order to get the X-ray parameters.

1For optical classification of INTEGRAL sources, please refer to Masetti’s web page at
http://www.iasfbo.inaf.it/extras/IGR/main.html
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Figure 1: Left panel:The fraction of the sky seen as a function of both 1σ limiting flux and exposure for the
complete 3rd catalogue. It can be seen that large fractions of the sky havevery different sensitivity limits.
Right panel: The value of<Ve/Va> as a function of limiting significance.

4. Absorption Distributions

The column density distribution for the complete sample is shown in figure 2 (left panel). As-
suming NH = 1022 cm−2 as the dividing line between absorbed and unabsorbed sources, we find
that absorption is present in 43% of the sample. Within our catalogue we find 5 mildly (MKN
3, NGC 3281, NGC 4945, Circinus galaxy and IGR J16351-5806) and one heavily (NGC 1068)
Compton thick AGN; we therefore estimate the fraction of Compton thick objects to be only 7%.
Although the fraction of absorbed sources is lower than obtained in various Swift/BAT and INTE-
GRAL/IBIS surveys, the percentage of Compton thick AGN is fully consistent with these previous
studies (see Table 1 in Ajello 2009).
To better investigate the absorption properties of our sample and to properly compare with optically
selected ones, the distribution in the set of type 2 objects have also been plotted in figure 2 (right
panel) where a peak at Log NH=23 cm−2 is evident. Among our type 2 objects we have estimated
that the fraction of absorbed (Log NH >22 cm−2) is 85% while that of Compton thick is 18%.

Figure 2: Left panel:Distribution of column density in the INTEGRAL complete sample. The dashed bins
represent upper limit measurements (including Galactic values, see text), while the filled bin corresponds to
GRS 1734-292 for which a lower limit is available.Right panel: Column density distribution in the 33 type
2 AGN of the complete sample. Dashed bin represents IGR J16024-6107 where no absorption in excess of
the Galactic one has been measured.
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5. Comparison and apparent disagreements with optically selected samples

While the estimates of the fraction of absorbed objects as well as the fraction of Compton
thick sources are fully consistent with previous soft gamma-ray surveys, they would appear to be
in contrast with results reported in optically selected samples. We will compare our results with
the Risaliti et al. (1999) sample selected in O[III] 5007 which is still used nowadays as a reference
work in the AGN absorption issue. This work provided the bestestimates of the key parameters of
the XRB spectral intensity around the 30 keV peak since it relied on Beppo/SAX PDS observations
of nearby bright (F10−100keV > 10−11 erg cm−2 s−1) objects, it also provided the first unbiased NH

distribution of Seyfert 2 objects finding a fraction with Log(NH)>22 of 95% and that of Compton
thick AGN of 50%. Before comparing these results with ours, we first updated the values of the
column densities of the sources in the Risaliti sample, finding more recent X-ray measurements for
many objects and for the first time an absorption estimate forfive sources. Our re-analysis of the
Risaliti sample yields a fraction of absorbed objects of 90%but the Compton thick fraction is 36%
(15 out of 41), i.e. smaller than found in the original paper but still a factor of two higher than our
estimate.
It is possible that in our survey we have not recognized some Compton thick AGN because of the
low statistical quality of the X-ray observations used to estimate NH . To see if this has happened we
can use the diagnostic diagram provided by Malizia et al. (2007). This diagram uses the NH versus
softness ratio (F2−10 keV /F20−100 keV ) to look for AGN candidates and its validity has recently been
confirmed by Ueda et al. (2007) and Malizia et al. (2009). Misclassified Compton thick objects
populate the part of the diagram with low absorption and low softness ratios and none of our sources
is located in this zone indicating that all the Compton thicksources in our complete sample have
been included.
We have also verified that our sample, when viewed in OIII, is not significantly different to that of
Risaliti et al. To this end, we have collected from the literature the [OIII] 5007 fluxes for all our
type 2 objects. As noted by Maiolino and Rieke (1995) the hostgalaxy gaseous disk might obscure
part of the narrow line region where the [OIII] 5007 emissionoriginates. To correct for this effect
we have used the prescription of Bassani et al. (1999) using the observed [OIII] 5007 fluxes and
Balmer decrement Hα /Hβ and when the latter was not available we based our correctionon the
Hβ /Hγ ratio (see Gu et al. 2006).
In figure 3 (left) the distribution of [O III] 5007 fluxes for our sample (dashed bins) is compared
with that of Risaliti et al. (1999): no difference is evidentfrom the figure indicating that we are
likely sampling the same population.
The most reasonable explanation for the difference in the fraction of Compton thick objects found
in gamma and optically selected samples is due to bias introduced by obscuration which reduces
the source luminosity by an amount depending on the column density. It is therefore more likely
that, at a given distance, the most heavily absorbed AGN willhave a flux below our sensitivity limit
than unabsorbed ones and therefore will be lost from our sample.

A method of investigating the number of these ’missing’ Compton thick sources is to calculate
the reduction in the 20-40 keV flux as a function of NH using a simple absorbed power-law model
in XSPEC. The average flux reduction is negligible below Log NH=24 and becomes progressively
more important thereafter (8%, 25% and 64% reduction in the ranges 24-24.5, 24.5-25, and 25-25.5
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Figure 3: Left pane: [O III] flux distribution of the Risaliti et al. sample compared to the one in INTEGRAL
complete sample (dashed bins).Right panel: Fraction of absorbed objects compared to the total number of
AGN as a function of redshift.

respectively). Despite the simplicity of the fit adopted, the numbers do not change significantly for
more complex models. Starting from the source numbers shownin figure 2 (right panel), we can
calculate that this reduction in flux would lead to the ’loss’of around 15 sources in the Compton
thick regime assuming a Euclidian LogN/LogS. This suggeststhat the true fraction of Compton
thick sources among Seyfert 2 is around 40% in reasonable agreement with that found for the
Risaliti et al. (1999) sample.
Another manner in which to examine the effect of absorption on source numbers is to calculate
the fraction of absorbed (NH≥ 1022 cm−2) objects compared to the total number of AGN (i.e. the
number of objects with NH≤ 1025 cm−2) as a function of redshift. We divided our sample into 5
bins of redshift (up to z=0.335) chosen in order to have a reasonable number of sources in each
bin. The result is shown in figure 3 (right panel) where there is a clear trend of decreasing fraction
of absorbed objects as the redshift increases. We interpretthis evidence as an indication that in
the low redshift bin we are seeing almost the entire AGN population, from unabsorbed to at least
mildly Compton thick; while in the total sample we lose the heavily absorbed ’counterparts’ of
distant and therefore dim sources with little or no absorption.
It is then incorrect to look at the overall sample in order to estimate the role of absorption and one
manner in which we can come closer to the true picture is by just adopting the first redshift bin
for our estimates. Despite the lower statistics, we are now in the position to compare our result
with that of Risaliti et al. in a more correct way. To do this, we use only the Seyfert 2’s in our
first redshift bin and then compare their column density distribution with that of all type 2 AGN in
the Risaliti et al. sample having z≤ 0.015. Up to this redshift, there are 17 objects in our sample
compared to 39 in that of Risaliti et al. . Figure 4 (left) shows the results of this comparison: the
similarity between the two distributions is striking with the fraction of objects having NH≥ 1023

cm−2 being similar in the two samples (∼ 75%). The fraction of Compton thick objects is also
remarkably close (35% compared to 36%).

In conclusion every method we use leads to an estimate of around 36%-40% for the true
fraction of Compton thick AGN among Seyfert 2. Going from just the Seyfert 2 to the entire AGN
population we note that the first bin, ranging up to z = 0.015, contains 25 AGN, of which 20 (80%)
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Figure 4: Left pane: Comparison of the distribution of column densities in the type 2 objects between Risaliti
et al. sample (up) and INTEGRAL sample (bottom) with z≤0.015.Right panel: Fraction of absorbed objects
compared to the total number of AGN as a function of luminosity

are absorbed and of these, 6 (24%) are Compton thick. It is still possible that the measured fraction
of Compton thick objects is a lower limit, since some of the most heavily absorbed sources may
not have sufficient luminosities to be detected even at the lowest redshifts.
We have also looked for a trend of decreasing fraction of absorbed AGN with increasing source
gamma-ray luminosities. This effect, which is well documented in the X-ray band (La Franca
et al. 2005), has also been observed in gamma-rays (Bassani et al. 2006, Sazonov et al. 2007
and references therein) and is also found in our sample as shown in figure 4 (right) Whether the
redshift effect discussed here may have contaminated this result or this is a direct consequence
of the evolution of AGN luminosity function with z, is not possible to discriminate here with the
present data. In fact, dividing the 25 sources with z≤0.015 into two luminosity bins, we find
comparable fractions of absorbed sources. This means that either our statistics are too low for a
proper estimate or the effect is not real but only induced by the selection due to z. Only with the
larger AGN sample that is now becoming available from the 4thIBIS survey (Bird et al. 2009),
which will be even better if combined with Swift-BAT extragalactic survey, will we be able to go
deeper at higher redshifts and provide the statistics whichwill allow us to discriminate between
these two effects (Malizia et al. in preparation). Whateverthe overall picture will be it is now clear
from this work that the fraction of the Compton thick objectsin the local Universe is 1 for every 4
AGN.
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