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In this talk I presented some non-Gaussian features of the foreground reduced WMAP five year
full sky temperature maps, which were recently reported in the Ref. [1]. And in these notes I first
discuss the statistics behind this analysis in some detail. Then I describe invaluable insights which
I got from discussions after my talk on the Workshop. And finally I explain why, in my current
opinion, the signal detected in the Ref. [1] can hardly have something to do with cosmological
perturbations, but rather it presents a fancy measurement of the Milky Way angular width in the
microwave frequency range.

International Workshop on Cosmic Structure and Evolution
September 23-25, 2009
Bielefeld , Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:Alexey.Golovnev@physik.uni-muenchen.de


P
o
S
(
C
o
s
m
o
l
o
g
y
2
0
0
9
)
0
1
3

Non-Gaussian Probability Distribution? Alexey Golovnev

1. Introduction

Nowadays we witness a great progress in both theoretical and observational cosmology which
makes our demands and expectations ever higher and turns us to discussing more and more sub-
tle properties of the available data. One of such popular topics is the quest for primordial non-
Gaussianities in the spectrum of the CMB radiation. Not really expected to be detectable for the
simplest models of inflation, these small departures from the purely Gaussian signal would help
to distinguish between more elaborate inflationary scenarios and would probably provide us with
some new insights into the wonderful realm of the very early Universe.

The approach I discuss is based on a very simple idea. Assume that the Universe is statistically
isotropic, and all the temperature fluctuations in the CMB radiation are of statistical nature. Then
we decompose the fluctuations, as usual, into the spherical harmonics denoting the coefficients by
al,m and get

〈al,ma∗l′,m′〉 = 〈al,mal′,−m′〉 = Clδl,l′δm,m′ .

Moreover, al,m’s with a fixed value of l but different values of m can be thought of as different
realizations of one and the same random variable. So that one can naturally ask a question about
the shape of the distribution. It can be answered by many methods, from plotting a histogram of the
sample to estimating the higher moments of the distribution. A Gaussian distribution is completely
determined by two parameters, its mean and its variance. For fluctuations the mean is taken to be
0, and the only parameter left is the variance, Cl . (Of course, it implies rescaled χ2-distributions
for quadratic in a quantities.) If the random variable is known (or assumed) to be Gaussian, this
single parameter can, in principle, be extracted from any part of the probability distribution. The
idea of the Ref. [1] is to take only the tails, i.e. to deduce the variance Cl once more from only the
distribution of large coefficients, |al,m|2 > Cl , and then to compare this result with the original one.
Up to statistical variations in the number of data points in the tails, this corresponds to using the
order statistics with somewhat more points than in top and bottom sextiles but with less points than
in two marginal quintiles.

Applied to the full sky foreground reduced maps, this method gives a well-pronounced peak
in the difference between the two estimates for the variance. The peak is located in the range of
l ≈ 45± 15. The fluctuations outside of the peak are also much larger than would be expected
statistically. This is, of course, due to remaining foreground contamination, and the only reason
to take the peak seriously was that it is a few more times larger than the other fluctuations [1] and
it looks more or less the same in different frequency bands (up to the different overall level of
noise). And this was also my conclusion that it should have something to do with cosmology. I
explain the relevant statistics in Sections 2 and 3. And for the graphical presentation of results,
I refer the reader to [1]. However, at the Workshop I have learned from Pavel Naselsky that the
multipole coefficients with even values of l + m have the worst contamination from Galaxy, see
below. In Section 4 I discuss the data analysis with separation of (l + m)-even and (l + m)-odd
harmonics, and show that the initial assumption of having different realizations of one random
variable is heavily disproved due to Galactic signal which invalidates the claim for cosmological
non-Gaussianities. My current conclusion presented in the Section 5 is that the effects observed in
[1] refer to the structure of Galactic foregrounds, and not to properties of primordial fluctuations.
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Due to this reason I cancelled my authorship for the second version of that article. (I was a co-
author for the first one). And I would like to note here that all the computer work for the article
[1] was done by my former co-author Vitaly Vanchurin and, needless to say, if there appears to be
something primordial about this peak then the whole success should be attributed solely to him and
his enthusiasm. An interested reader may also want to consult with the original reference [1] for
the opinion opposite to mine.

2. The method and possible variations

The original approach was to consider al.m’s with m > 0 and fixed l as a sample of l observed
values of a complex random variable with the Gaussian probability density of variance σ 2 = Cl:

p(z)dzdz∗ =
1

πσ 2 exp
(
−zz∗

σ 2

)
dzdz∗.

Then a function f1, defined by
f1(z) =

e
2

zz∗ ·θ(zz∗−σ2) (2.1)

where θ is the step function, has an expectation value equal to the variance. Indeed,

〈 f1〉=
e

2πσ 2

∫
zz∗θ(zz∗−σ 2) ·exp

(
−zz∗

σ 2

)
dzdz∗ =

eσ2

2

∫ ∞

1
ye−ydy =

eσ 2

2
(y+1)e−y

∣∣∣∣
y=1

= σ2.

Statistically, given a sample of N data points (in our case N = l), one evaluates the quantity

f1 =
e

2N

N

∑
i=1

ziz∗i ·θ(ziz∗i −σ 2)

and compares it to σ 2. Note that in this Section I ignore the fact that we can do nothing but use the
sample variance in (2.1). I’ll come to it later.

In order to have more data points we need to resort to real variables because |al,m| = |al,−m|.
In this case I would assume that there are N = 2l + 1 observations, namely |al,0|,

√
2|ℜal,m| and√

2|ℑal,m| for m > 0, of a real random variable, in which case the probability density is

p(x)dx =
1√

2πσ
exp
(
− x2

2σ 2

)
dx,

and the same analysis carries over for another observable

f2(x) =
1

1− erf
(√

1
2

)
+
√

2
πe

· x2θ(x2 −σ 2) (2.2)

with the error function defined by erf(t) = 2√
π
∫ t

0 e−x2
dx. One can prove prove that 〈 f2〉 = σ 2 using

the following simple analytic trick:

4σ2
√

π

∫ ∞
√

1
2

ye−y2
dy = −4σ 2

√
π

d
dα

(∫ ∞
√

1
2

e−αy2
dy
)∣∣∣∣

α=1
= −4σ 2

√
π

d
dα

(
1√
α

∫ ∞
√

α
2

e−t2
dt

)∣∣∣∣∣
α=1

.
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All of this can be done in a variety of ways. For example, one can work with order statistics
which I already mentioned in the Introduction. Another possible idea is to average only over N∗

data points which are larger than the standard deviation without summing the zeros for excluded
entries as it should be done according to (2.1) or (2.2). The mean number of remaining observations
is given by 〈N∗〉 = N

∫
θ(|x|2 −σ 2)p(x)dx.

In the complex case we have 〈N∗〉 = N
e and transform f1 into a new estimator

f3 =
1
2
· ∑ziz∗i ·θ(ziz∗i −σ2)

∑θ(ziz∗i −σ 2)
(2.3)

if ∃i : ziz∗i > σ2 and f3 ≡ σ2 otherwise. The latter case has only a tiny probability with a God-given
variance σ 2, and it is absolutely impossible if the sample variance is used. Surprisingly, 〈f3〉 = σ2

with no bias. A simple way to check it is to divide the integration domain into 2N parts with definite
signs of all ti − 1 where ti ≡ ziz∗i

σ2 . The integral under consideration is a symmetric function of the
variables ti, therefore for each k, 0 6 k 6 N, one can consider N!

k!(N−k)! indentical integrals with
ti 6 1 for i 6 k and t j > 1 for j > k +1:

〈f3〉 =
∫

f3 ·
N

∏
i=1

p(zi)dzidz∗i =

= σ 2
(∫ 1

0
e−tdt

)N

+
σ2

2

N

∑
k=1

N!
k!(N − k)!

N

∏
j=k+1

∫ 1

0
dt je−t j ·

k

∏
i=1

∫ ∞

1
dtie−ti · t1 + t2 + . . .+ tk

k
=

= σ 2
N

∑
k=0

N!
k!(N − k)!

(
1− 1

e

)N−k 1
ek = σ 2.

The product symbols denote here the products of
∫

dte−t operators, and not of the integrands after
the dot. Note also that if we were to define f3 ≡ 0 when all the observations are below the standard
deviation, then a tiny bias of 1 part in eN would have been there.

Finally, for real variables 〈N∗〉 =
(

1− erf
(√

1
2

))
·N, and the corresponding estimator is:

f4 =
1− erf

(√
1
2

)
1− erf

(√
1
2

)
+
√

2
πe

· ∑x2
i ·θ(x2

i −σ 2)
∑θ(x2

i −σ2)
(2.4)

and f4 ≡ σ 2 if ∀i : x2
i < σ 2. The proof that 〈f4〉= σ2 is exactly the same as for f3 but with binomial

series for
((

1− erf
(√

1
2

))
+ erf

(√
1
2

))N

.

3. A statistical interlude

Up to this point I was using the variance in all estimators as if it was known exactly. In reality
the sample variance is used, of course. Generically, it should induce some bias. For example, with
N observations of a random variable x with the mean value µ one can estimate the variance as
∑(xi−µ)2

N . It is well-known that if the sample average is used for the mean, then this estimator is
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only asymptotically unbiased, that is it has a non-zero bias which tends to zero when N → ∞. An
unbiased estimator is ∑(xi−µ)2

N−1 . It diverges if N = 1 which makes a good sense since nobody can
ever measure two parameters with a one simple observation. Otherwise, one combination of the
data is used to define the mean while the others give information about the random deviations.

I will illustrate the bias only for the estimator f1, in which case we have

f̃1 =
e

2N

N

∑
i=1

ziz∗i ·θ

(
ziz∗i −

1
N

N

∑
i=1

ziz∗i

)
.

With the variables ti ≡ ziz∗i
σ2 one gets

〈f̃1〉 =
eσ 2

2N

N

∏
i=1

∫ ∞

0
dtie−ti ·

N

∑
j=1

t jθ

(
t j −

1
N

N

∑
k=1

tk

)
=

eσ2

2

N

∏
i=1

∫ ∞

0
dtie−ti · tNθ

(
tN − 1

N

N

∑
j=1

t j

)
.

In the last equality I have used the fact that everything is symmetric with respect to permutations
of ti variables. Now I introduce a new variable v = ∑N

i=1 ti instead of tN and obtain the final result:

〈f̃1〉 =
eσ 2

2

N−1

∏
i=1

∫ ∞

0
dti ·

∫
dv

(
v−

N−1

∑
k=1

tk

)
θ

(
v− N

N −1

N−1

∑
j=1

t j

)
= eσ2

(
1− 1

N

)N

.

It is clear that the estimator is only asymptotically unbiased, 〈f̃1〉 = σ2
(
1+ 1

2N +O
( 1

N2

))
. In any

case, we are not expected to do better. There are many other difficulties in extracting the CMB data
from observations.

Of course, one can also estimate the standard deviations for the estimated quantities. But note
that in our case the only meaning of it is the minimal level of fluctuations which should be there if
the origin of the signal is stochastic. The actual fluctuations are higher. Nevertheless, the standard

deviation of f1 can be found as
√
〈f2

1〉−〈f1〉2, and one can easily check that, as usual, it reduces

to 1√
N

√
〈 f 2

1 〉−〈 f1〉2 =
√

5e−4
2
√

N
σ 2 ≈ 1.55 σ2

√
N

. But actually, we are interested in the fluctuations of
the difference between the two estimations of the variance. This difference fluctuates less than the
individual terms. Indeed,〈( e

2
zz∗θ(zz∗−σ 2)− zz∗

)2
〉

= σ4
(

e2

4
− e
)∫ ∞

1
t2e−tdt +σ 4

∫ ∞

0
t2e−tdt =

(
5e
4
−3
)

σ4.

It gives the deviation ≈ 0.63 σ2
√

N
which should be approximately correct because the random excur-

sions of σ are much less than those of the individual observations.
For the estimators (2.3) and (2.4) the standard deviations are not of the form something simple√

N
.

One can find them exploiting the above trick with the integration domains, this time for the inte-
grand 1

k2

(
∑k

i=1 ti
)2

. In the complex case, the result would be

〈f2
3〉 =

σ 4

4

N

∑
k=1

N!
k!(N − k)!

(
1− 1

e

)N−k 1
ek ·

4k2 + k
k2 = σ4 +

σ4

4

N

∑
k=1

N!
k!(N − k)!

(
1− 1

e

)N−k 1
ek ·

1
k
.

The first term is just 〈f3〉2 while the second one gives the variance. Asymptotically, only large
values of k do matter, and we can substitute k by k+1. Up to the factor of e

N+1 it gives the binomial
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formula again (neglecting the contribution of the first few terms). Hence, the standard deviation is
given by ≈

√
eσ2

2
√

N
≈ 0.8 σ2

√
N

. A little bit more tedious calculation shows that the standard deviation
of the difference between 〈f3〉 and the sample variance has the same asymptotic behaviour.

Ideally, one should also take the effects of using the sample variance in the step functions into
account. But it is not of my concern now. For clean maps the main task would have been to test
the hypothesis that all the deviations from zero difference between two Cl estimations are purely
statistical. However, we use the noisy maps. And the signal considerably deviates from Gaussianity
anyway. The curious result was only about the large peak at l ≈ 45±15 which was argued to have
a cosmological origin [1].

4. The structure of Galactic contamination and the data

My talk at the Workshop was followed by a very interesting discussion, and I learned from
Pavel Naselsky that the al,m-coefficients with even values of l + m are more contaminated by the
Galaxy [2]. The reason is very simple to understand examining the Rodrigues formula for the
associated Legendre polynomials on the interval z ∈ [−1,1],

Pm
l (z) = const ·

(
1− z2)m

2 dl+m

dzl+m

(
z2 −1

)l
.

The Galactic plane corresponds to z = 0. Therefore, (l + m)-odd polynomials are antisymmetric
under reflection in Galactic plane (z→−z) and have roots at z = 0, while the (l+m)-even ones have
local extrema at the same place. Note also that l ∼ 45 corresponds to the scale of several angular
degrees which nicely matches with the apparent width of the Milky Way and with the width of
the red central stripe on the pictures of the WMAP results. One has to analyse these harmonics
separately. And as reported in the second version of [1], the (l + m)-even coefficients reproduce
mostly the same shape of the super-Gaussian peak, while the (l + m)-odd ones give a small sub-
Gaussian valley at the same values of l. It already shows that different al,m’s for the same Cl are
not at all equivalent as they were assumed for the purposes of this analysis.

I also handled the W band (five-year) data manually in order to gain a better perception of
the numbers. Examining the data, one can see the super-Gaussian character of (l + m)-even ob-
servations with almost a naked eye. There are many points with large values, and many points are
considerably smaller than the standard deviation. Sometimes just a couple of very large data points
makes a significant part of the peak. For example, I found that the imaginary part of a46,46 is more
than two times larger than even the largest of other numbers in the group of C46.

On the Fig. 1 I present the values of l(l+1)Cl
2π versus l. Only the left, ascending part of the

peak is plotted there, as it is less challenging for a manual computation. Unlike in [1], I used the
estimator (2.4). The data points are binned into the groups of five, that is the values of the function
are given only for values of the argument congruent to zero modulo five, and each ordinate is an
average of five values, those from l − 2 to l + 2. For even harmonics we see the peak, where the
red line (a) is the sample variance for all even coefficients, while the purple line (b) is obtained
with the estimator (2.4). The same is done for odd harmonics (the blue (c) and the green (d) lines),
and a small valley is revealed. I won’t bet for the precise ordinates as I was calculating manually
and rounding the data a little bit. But the general structure is represented correctly and agrees with
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Figure 1: Estimated values of 10−3 · l(l+1)Cl
2π in units of µK2 for the W band. The red line (a) is obtained

with all (l + m)-even harmonics. For the purple line (b) only large (l + m)-even coefficients are used. The
(l +m)-odd multipoles give the blue line (c), while restricting them to only the large ones results in the green
line (d).

the claim in the Ref. [1]. We can see that the peak is somewhat reduced compared to what was
plotted in [1] without the separation of harmonics, at least in its relative weight, ∆Cl

Cl
. And what

is more important, the red line (a) goes several times higher than the blue one (c). (And even the
blue line (c) is some factor of two higher than the actual primordial radiation [3].) This is true not
only in average, but also for every single Cl . It clearly shows that the dominant signal for these
multipoles comes from the Galaxy, and it also heavily disproves the original hypothesis of having
different observations of a one random variable. If l +m is even, one also gets the large coefficients
with large m’s more frequently than for the middle values of m, as was stated in [1]. This effect is
by far less pronounced than the difference between the red (a) and the blue (c) lines. But on the
other hand, it shows that, even after the separation of different parity harmonics, the signal cannot
be analysed reliably in this way. A considerable part of the initial peak came from the mixing of
harmonics with essentially different levels of contamination which overweights the central region
and the tails of the distribution. The remaining (l + m)-even peak may also be the consequence
of a non-uniform contamination, although the Galactic signal by itself is not very Gaussian. It
could also be an interesting problem to compare the results of real and complex random variables
analysis. The direction of zero Galactic longitude points at the Galactic center, and therefore cosine
and sine harmonics might receive different contaminations.

The peak disappears when we go to larger l and the spherical harmonics start probing the
latitude scales smaller than the width of the bulk of Galactic signal. And therefore the different
parity harmonics become not so different in the contamination level. For example, l(l+1)Cl

2π for
l = 100 estimated with (l + m)-even harmonics is only few percent larger than estimated with
(l +m)-odd ones. (It is about 8000µK2.) Moreover, |a100,0| is quite large, and C100-even estimated
without m = 0 is a bit smaller than C100-odd.
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It is hard to infer about the origin of the valley without knowing the detailed structure of
the Galactic contribution. It can come from some non-Gaussian properties of the foregrounds. It
can reflect some shortcomings of the foreground reduction procedures somehow oversubtracting
the super-Gaussian noise from the less affected coefficients. Probably, one could even devise a
reasonable mixing of signals which would mimic a sub-Gaussian distribution, although it may
require some bias of the mean values too.

5. Conclusions

In these notes I discussed the statistics behind the non-Gaussian anomalies reported in Ref. [1].
After that I have shown that the most probable explanation of the signal refers to geometric proper-
ties of the Galactic signal, and not to cosmology. Admittedly, I do not have a good understanding
of the structure of the noise. But at the very least, the claim for cosmological non-Gaussianities is
pretty much premature. (I refer an interested reader to the work [1] for a different opinion.) On
the other hand, one could probably use this kind of analysis to extract some information about the
structure of foregrounds.
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