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A higher order theory of dilaton gravity is motivated and presented. Although its Lagrangian
density involves higher powers of the Riemann tensor and of the first two derivatives of the dila-
ton, the resulting equations of motion are quasi-linear in the second derivatives of both the metric
tensor and of the dilaton. The higher order dilaton gravity with corrections up to arbitrary order
in field derivatives is investigated in a co-dimension 1 brane scenario with general brane local-
ized interactions. The derivation of the effective gravitational equations of motion at the brane is
addressed in the covariant approach, with the results presented in detail for the first order dila-
ton gravity. The crucial influence of the bulk Z2 symmetry (with its fixed point at the brane
position) on the form and the number of effective brane equations is shown and discussed. The
generic influence of the bulk gravity solution on the effective Einstein-like equation at the brane
is demonstrated. The resulting modified Friedmann equations at the brane are derived.
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1. Extended theories of gravity

General Relativity provides a successful classical description of gravitational interactions. Fur-
thermore, it has passed numerous consistency and experimental tests. Nevertheless, it is not without
certain shortcomings. For example the resistance towards quantization, or the lack of unification
between gauge interactions and gravity, are quite generally recognized as crucial problems. Conse-
quently, an extended theory of gravity is searched for, obviously with Einstein’s General Relativity
as the main part of its structure, and string theories (or encompassing M-theory) amongst the most
serious candidates.

In currently observed 4 space-time dimensions, General Relativity can be regarded as a natural
description of gravitational interactions, as the Einstein equation of motion, i.e.

Rµν − 1
2 R gµν = κ T (4)

µν , (1.1)

where T (4)
µν is the energy-momentum tensor and κ = M−2

P , MP denoting the Planck scale, can be
constructed by requiring that the tensor on its l.h.s. (here: the Einstein tensor) is a most general lin-
ear combination of rank 2 tensors fulfilling the conditions for a physically viable theory of gravity.
To be more specific, it is (i) symmetric in its indices, (ii) divergence-free (i.e. covariantly con-
served), (iii) dependent on the metric tensor and its first two derivatives only, and (iv) linear in the
second derivative of the metric tensor. The Einstein equation (1.1) can be also obtained from the
Einstein-Hilbert action ∫

d4x
√
−g
(

1
2κ

R +LM

)
, (1.2)

which is linear in the Riemann tensor, and T (4)
µν = gµνLM−2 δLM

δgµν .
Formulation of string theories requires extra spatial dimensions. In higher-dimensional space-

times, however, the Einstein tensor is not the only possibility satisfying conditions (i)-(iv), with
condition (iv) relaxed to quasi-linearity1 in the second derivative of the metric tensor. Specifically,
the gravity action (1.2) can be generalized to include certain combinations of higher powers of
the Riemann tensor, yielding the so-called Einstein-Lovelock gravity [1]. For a given order in the
Riemann tensor the appropriate contribution to the action is unique up to overall normalization,
with the quadratic contribution given by the Gauss-Bonnet term [2].

The low energy effective action obtained within the string theories framework, usually referred
to in the form of the α ′ expansion, where α ′ = M−2

s and Ms denotes the string energy scale, ac-
tually predicts higher derivative corrections to gravity interactions [3]. To be more explicit, let
me address the effective action in string theories restricted to the metric tensor and the dilaton, as
these two fields are common for all string theories. At the lowest order of the α ′ expansion, the
Einstein-Hilbert Lagrangian (1.2) of the standard gravity is obtained - coupled to the scalar field.
The first correction to gravitational interactions can be cast in the form of the Gauss-Bonnet term
via local field redefinitions, but higher order corrections appear also for the dilaton interactions.
Consequently, higher order theories of gravity coupled to the dilaton seem to be very interesting
from the point of view of extended theories of gravity as motivated by string theories.

1Quasi-linearity in the second derivative of the metric tensor implies that the expression under consideration is still
at most of the first order in the second derivative of the metric, but the coefficient of the second derivative can be a
function of the first derivative of the metric.
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2. Higher order dilaton gravity

In [4] the Einstein-Lovelock theory of higher order gravity was generalized to higher order
dilaton gravity by coupling to the dilaton. To be more explicit, conditions (i)-(iv) for a physically
viable theory of gravity were appropriately extended to accommodate a scalar field interacting with
gravity in a higher-dimensional space-time. Specifically, the conditions for the equations of motion

Tµν =
Nmax

∑
N=1

αN

2
T (N)

µν = 0 , W =
Nmax

∑
N=1

αN

2
W (N) = 0 (2.1)

of a higher order dilaton gravity theory, where the N-th order contributions T (N)
µν and W (N) to the

gravitational and the dilaton equations of motion2, respectively, involve 2N derivatives of the fields,
were established as follows: (I) Tµν is symmetric in its indices, (II) ∇νT ν

µ = const · (∂µφ)W , (III)
Tµν and W depend on the metric, the dilaton and their first two derivatives only, (IV) Tµν and W
are quasi-linear3 in the second derivatives of both the metric tensor and of the dilaton field, (V) in
the string-like frame, where the pure gravity term is multiplied by e−φ , the first derivative of the
dilaton appears in the (∂µφ)(∂ µφ) combination exclusively4.

Following conditions (I)-(III) and (V), the higher-dimensional equations of motion (2.1) of
the higher order dilaton gravity were derived in [4]. Condition (IV) was employed only implicitly
and for the metric tensor exclusively - its fulfillment with respect to the dilaton field is a result of
the construction. Furthermore, the constructed equations of motion (2.1) are unique up to overall
normalization constants αN . Moreover, at each step of the construction the number of constraints
was higher than the number of available constants, thus the fact that the resulting equations of
motion are not vanishing identically is highly non-trivial.

In order to formulate eqs. (2.1) in a particularly compact and tractable form, it is convenient to
define the following notation. First of all, let me introduce the generalized Kronecker delta, namely

δ
σ1σ2···σN
ρ1ρ2···ρN

= det


δ

σ1
ρ1 δ

σ1
ρ2 · · · δ

σ1
ρN

· · · · · ·
· · · · · ·

δ
σN
ρ1 δ

σN
ρ2 · · · δ

σN
ρN

 , (2.2)

whose most important property is the full antisymmetry in both covariant and contravariant indices.
Basing on (2.2), two generalizations of the standard trace operator can be defined as follows:

T (M) = δ
σ1σ2···σN
ρ1ρ2···ρN

Mρ1ρ2···ρN
σ1σ2···σN , T

ν

µ (M) = δ
ν σ1σ2···σN
µ ρ1ρ2···ρN

Mρ1ρ2···ρN
σ1σ2···σN , (2.3)

which map tensors of rank (N,N) into numbers or rank (1,1) tensors, respectively. Employing the
generalized traces (2.3), raising ‘sums’ of tensor to a ‘power’ can be formulated, for example

T
([1

2R∗∗∗∗ ⊕2(∇∇)∗∗φ
]2)= 1

4 T
(
R∗∗∗∗R

∗∗
∗∗
)
+2T

(
R∗∗∗∗ (∇∇)∗∗φ

)
+4T

(
(∇∇)∗∗φ (∇∇)∗∗φ

)
= 1

4 δ
σ1σ2σ3σ4
ρ1ρ2ρ3ρ4

Rρ1ρ2
σ1σ2 Rρ3ρ4

σ3σ4 + 2δ
σ1σ2σ3
ρ1ρ2ρ3

Rρ1ρ2
σ1σ2 (∇∇)ρ3

σ3φ + 4δ
σ1σ2
ρ1ρ2

(∇∇)ρ1
σ1φ (∇∇)ρ2

σ2φ ,

2The order N of corrections is restricted by the dimensionality d of space-time. Terms from the N-th order contri-
butions T (N)

µν and W (N) can appear in the equations of motion (2.1) only if 2N ≤ d.
3Quasi-linearity in the second derivatives guarantees that the initial (or boundary) conditions can be formulated in

the standard way. This property is also crucial for the existence of brane solutions in the thin wall limit.
4Condition (V) restricts quite strongly the form of the constructed equations of motion (2.1), but is a necessary

condition of the O(d,d) symmetry expected from string theories (see the discussion of the O(d,d) symmetry in [4]).
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where the asterisks5 indicate ranks of tensors, Rρσ

µν ≡Rµν
ρσ and (∇∇)ρ

σ φ ≡ ∇ρ∂σ φ . Thus in the
notation of (2.3), the constructed equations of motion (2.1) of higher order dilaton gravity read

−
Nmax

∑
N=1

αN

2
T µν

([1
2R∗∗∗∗ ⊕2(∇∇)∗∗φ ⊕ (−1)(∂φ)2]N)= 0 ,

−
Nmax

∑
N=1

αN

2
T
([1

2R∗∗∗∗ ⊕2(∇∇)∗∗φ ⊕ (−1)(∂φ)2]N)= 0 . (2.4)

A Lagrangian density corresponding to the constructed equations of motion was also found in [4]:

L = e−φ

{
Nmax

∑
N=1

αN

2
T
([1

2R∗∗∗∗ ⊕2(∇∇)∗∗φ ⊕ (−1)(∂φ)2]N)} . (2.5)

3. Higher order dilaton gravity and a co-dimension 1 brane

The higher order dilaton gravity constructed in [4] is a higher-dimensional theory, and as such
it obviously cannot be a straightforward description of our world, as we simply do not observe
any extra dimension(s), yet. In order to study the potentially observable predictions of any higher-
dimensional theory, its effective 4-dimensional description has to be found. The most popular
approach in this respect is based on brane scenarios, where the Standard Model is localized on a
brane embedded in a higher-dimensional space-time (the ‘bulk’), whereas gravity propagates in the
full higher-dimensional space-time, as related to the space-time geometry itself. In such a setup
a natural question immediately appears: what gravity will be induced at the brane? This problem
was addressed in detail in [5], where the effective equations of motion at the brane were derived in
the covariant approach6, with the bulk action given by the higher order dilaton gravity theory.

The importance of considering the effective gravitational equations at the brane in the higher
order dilaton gravity theory should be underlined. This dilaton gravity model is closely related to
string theories - its interactions with up to four derivatives are exactly the same as those present in
the α ′ expansion in string theories, when restricted to the gravity and the dilaton field (see e.g. [7]).
Although such correspondence has not been proven for interactions with six or more derivatives,
the theory of higher order dilaton gravity constructed in [4] can be expected to constitute a part
of the effective string dilaton gravity action also at the level of more than four derivatives, as is
indicated e.g. by the O(d,d) symmetry discussed in [4]. Consequently, the covariant derivation
of the effective brane equations in this setup can allow for studying e.g. the potentially observable
effects of string theories on specific cosmological models.

At the level of the Lagrangian density, a co-dimension 1 brane corresponds to an inclusion of
general brane interactions LB, localized on the brane via Dirac delta type distribution δB. Hence,
allowing also for a bulk scalar potential V (φ), the Lagrangian density (2.5) becomes

L = e−φ

{
Nmax

∑
N=1

αN

2
T
([1

2R∗∗∗∗ ⊕2(∇∇)∗∗φ ⊕ (−1)(∂φ)2]N)−V (φ)+LBδB

}
, (3.1)

5‘Powers’ and ‘sums’ (⊕) of tensors, as well as asterisks, are employed under the generalized traces T and Tµν

exclusively. For details of notation see [4, 5].
6The covariant approach to the derivation of effective brane equations was employed in [6] for the standard gravity,

also with the Gauss-Bonnet term or the dilaton included (there, however, the approach was not fully covariant).
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whereas the equations of motion (2.4) of the higher order dilaton gravity are modified as follows:

−
Nmax

∑
N=1

αN

2
T µν

([1
2R∗∗∗∗ ⊕2(∇∇)∗∗φ ⊕ (−1)(∂φ)2]N)+gµνV (φ)− τµνδB = 0 ,

−
Nmax

∑
N=1

αN

2
T
([1

2R∗∗∗∗ ⊕2(∇∇)∗∗φ ⊕ (−1)(∂φ)2]N)+V (φ)−V ′(φ)− τφ δB = 0 . (3.2)

The brane localized terms (sources)

τµν = hµνLB−2
δLB

δhµν
, τφ = LB−

δLB

δφ
(3.3)

originate from the brane interactions LB, while the metric tensor hµν induced on the brane is given
by a projection of the bulk metric tensor gµν on the brane hypersurface: hµν = gµν −nµnν , where
nµ is a vector field orthonormal to the brane at its position.

4. Effective equations of motion at the brane

Effective brane equations should follow from the bulk equations of motion (3.2) and relate
the dynamics of the brane fields (i.e. the induced metric tensor hµν and the dilaton field φ , both
evaluated on the brane) to the brane localized sources τµν and τφ . Optimally, the brane equations
should be independent of the bulk solution. It is precisely the latter which implies that the effective
(d − 1)-dimensional equations at the brane cannot be obtained by simply restricting the full d-
dimensional equations (3.2), as such an approach would leave the result dependent on the bulk
quantities. Therefore the derivation of the effective equations of motion at the brane required
establishing a quite sophisticated procedure, as it was shown (and approached accordingly) in [5].

In order to derive the effective brane equations of motion, the key bulk quantities appearing in
the equations of motion (3.2), i.e. Rρσ

µν , (∇∇)σ
ρ φ and (∂φ)2, should be replaced with their brane

equivalents, namely Rρσ

µν , (DD)σ
ρ φ and (Dφ)2. It should be underlined, that the Riemann tensor

Rρσ

µν and the covariant derivative ∇µ are associated with the bulk metric tensor gµν , whereas the
Riemann tensor Rρσ

µν and the covariant derivative Dµ - with the brane metric tensor hµν . Due to the
full antisymmetrization, most of the appropriate decompositions are considerably simplified under
the generalized traces (2.3), yielding

R∗∗∗∗ → R∗∗∗∗−2K∗∗K
∗
∗ −4(nn)∗∗

{
£nK∗∗ − (KK)∗∗

}
−8(nD)∗∗K

∗
∗ ,

(∇∇)∗∗φ →
[
(DD)∗∗φ +K∗∗£nφ

]
+(nn)∗∗

{
£2

nφ −ae
∇eφ

}
+2
[
(nD)∗∗£nφ − (nKD)∗∗φ

]
,

(∂φ)2 = (Dφ)2 +(£nφ)2 , (4.1)

where Kµν = 1
2 £nhµν is the extrinsic curvature of the brane, £n is the Lie derivative along nµ ,

and aλ ≡ nρ∇ρnλ . Moreover, (nn)∗∗ ≡ n∗n∗, (∇∇)∗∗ ≡ ∇∗∇
∗, (DD)∗∗ ≡ D∗D∗, (KK)∗∗ ≡ K∗

λ
Kλ
∗ ,

(nD)∗∗ ≡ 1
2 (n∗D∗+n∗D∗) and (nKD)∗∗ ≡ 1

2

(
n∗K∗λ Dλ +n∗Kλ

∗ Dλ

)
.

The decompositions (4.1) have to be entered into the bulk equations of motion (3.2). However,
not all quantities present on the right hand sides of eqs. (4.1) should appear in the effective equations
of motion at the brane. Certainly, brane equations should involve such brane associated quantities

5
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as Rρσ

µν , (DD)σ
ρ φ or (Dφ)2. On the other hand, neither Kµν nor £nφ should appear there - nor their

Lie derivatives, as all these quantities are derivatives of the brane fields (hµν and φ ) in the direction
perpendicular to the brane, thus bulk associated. Moreover, Kµν and £nφ can be discontinuous
when ‘crossing’ the brane, hence £nKµν and £2

nφ can be singular on the brane, though they can
have finite contributions as well. Nevertheless, all this information has to be properly taken into
account for the derivation of the effective equations of motion at the brane.

5. Effective equations of motion at the brane in the first order dilaton gravity

As was demonstrated in detail in [5], the issue of the effective equations of motion at the
brane can be addressed in a general way - for any order Nmax of corrections appearing in the
bulk equations of motion (3.2). Therefore, let me present the outcome for the first order dilaton
gravity, i.e. Nmax = 1. Qualitatively, the results and the conclusions are analogous to those for the
higher (arbitrary) order dilaton gravity, but the complexity of formulae increases formidably with
increasing Nmax. I will also assume d = 5, i.e. a 4-dimensional brane.

If no additional assumptions are made about the bulk or the brane, there is just a single brane
equation which can be derived, namely

Dσ
τρσ +

(
hρσ τφ − τρσ

)
Dσ

φ = 0 . (5.1)

Moreover, usually it is not even a dynamical equation, unless the brane interactions LB, sourcing
(3.3) the brane terms τµν and τφ , involve e.g. brane localized kinetic terms for the induced metric
tensor hµν and/or for the dilaton field φ . Otherwise, eq. (5.1) is just a consistency condition on
the brane sources τµν and τφ , or a ‘generalized’ covariant conservation of the energy-momentum
tensor τµν . Alternatively, eq. (5.1) can be regarded as a relation between the brane derivative of
the dilaton field and the brane sources - allowing to determine the dilaton derivative Dµφ in terms
of τµν and τφ . It should be also mentioned that eq. (5.1) has the same simple form also in higher
order dilaton gravity - independently of Nmax.

In brane scenarios it is quite usual by now to ‘automatically’ assume a Z2 symmetry for the
bulk - with its fixed point at the brane position. However, as it was shown in [5], such a Z2

symmetry is actually crucial for the existence of the effective brane equations. With its assumption
the first ‘true’ effective brane equation of motion can be derived, reading

R+2(DD)φ − (Dφ)2−2α
−1
1 V (φ) = 1

4 α
−2
1

[
−(ττ)+2τ τφ −3τ

2
φ

]
, (5.2)

where (ττ) ≡ τσ
ρ τ

ρ

σ . Although a single scalar equation certainly cannot be considered a brane
analog of the Einstein equation (1.1) for the standard gravity, it can be quite useful e.g. for highly
symmetric space-times. Furthermore, combining the effective brane equation (5.2) with the consis-
tency condition (5.1) allows to determine the brane curvature scalar R in terms of the brane sources
τµν and τφ and the value of the potential V (φ) on the brane.

With the bulk Z2 symmetry assumed, an effective Einstein-like equation at the brane can be
also derived, reading

Rµν − 1
2 hµν R =− 2

3

(
DµDνφ −hµν(DD)φ

)
− 1

4 hµν

(
(Dφ)2 +2α

−1
1 V (φ)

)
−Eµν

+ 1
4 α
−2
1

[
− (ττ)µν + 1

3 τ τµν +hµν

(
1
2(ττ)− 1

12 τ
2− 1

2 τ τφ + 3
4 τ

2
φ

)]
, (5.3)

6
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where (ττ)µν ≡ τσ
µ τσν . Obviously, there are new terms appearing in this equation - as compared to

the standard Einstein equation (1.1). First of all, eq. (5.3) involves terms depending on the dilaton
field φ , which is typical of gravity theories involving scalar fields. Regarding that it should be
supplemented by the consistency condition (5.1), brane derivatives of φ can be in fact removed.
Second, eq. (5.3) depends on the brane sources τµν and τφ quadratically, whereas in the standard
gravity the energy-momentum tensor T (4)

µν enters the Einstein equation (1.1) linearly only. Nev-
ertheless, such quadratic contributions are also typical of brane-world gravity theories. Last but
not least, the bulk Weyl tensor projected on the brane: Eµν = nαhβ

µnγhδ
ν Cαβγδ , contributing to the

Einstein-like effective equation at the brane (5.3). Consequently, the brane dynamics is explicitly
influenced by the bulk gravity solution - encoded in a single7 quantity. Summarizing, although
an Einstein-like effective equation at the brane (5.3) can be obtained if the bulk Z2 symmetry is
assumed, it is generically bulk-dependent. The scalar effective equation at the brane (5.2) and the
consistency condition (5.1) are the only bulk-independent brane equations which can be derived.

Terms linear in the energy-momentum tensor (present in the standard Einstein equation (1.1))
can be reintroduced into the Einstein-like brane equation of motion (5.3) by performing the follow-
ing decomposition: τµν = τ̃µν +hµν λ̃ , where τ̃µν is the energy-momentum tensor associated with
the fields we are interested in (e.g. the Standard Model fields assumed to be localized on the brane),
and λ̃ - a ‘cosmological constant’. Consequently, the Einstein-like brane equation (5.3) becomes

Rµν − 1
2 hµν R = 8π G̃ τ̃µν − 2

3

(
(DD)µνφ −hµν(DD)φ

)
− 1

4 hµν(Dφ)2−hµν Λ̃

−Eµν + 1
4 α
−2
1

[
− (τ̃ τ̃)µν + 1

3 τ̃ τ̃µν +hµν

(
1
2(τ̃ τ̃)− 1

12 τ̃
2 +
(2

3 λ̃ − 1
2 τφ

)
τ̃

)]
, (5.4)

where

G̃≡ −(d−3) λ̃

32(d−2)π α2
1

, Λ̃ = 1
2 α
−1
1 V (φ)|φ=0− 1

4 α
−2
1

(
λ̃

2−2 λ̃ τφ |φ=0 + 3
4 τ

2
φ |φ=0

)
(5.5)

can be interpreted as the effective brane Newton’s and cosmological constants, respectively.

6. Modified Friedmann equations at the brane

All the results presented above were obtained in the covariant approach, without any additional
assumptions on the brane or the bulk solutions - apart from the bulk Z2 symmetry, which is essen-
tial for the existence of effective brane equations. However, studying the details of the effective
4-dimensional phenomenology requires at least a specific ansatz on the brane metric tensor. Ac-
cording to the standard cosmological picture, confirmed by numerous observations, our expanding
world can be to a good approximation described as spatially homogeneous and isotropic, which cor-
responds to a maximally spatially symmetric space-time. Consequently, the Friedmann-Lemaître-
Robertson-Walker (FLRW) ansatz can be assumed for the brane metric tensor hµν , to be followed
by appropriate assumptions (basically corresponding to homogeneity and isotropy) for other rele-
vant quantities: Eν

µ = diag
(
Et

t ,−1
3 Et

t ,−1
3 Et

t ,−1
3 Et

t
)
, Dµφ =

(
φ̇ ,0,0,0

)
, τν

µ = diag
(
τt ,τi,τi,τi

)
.

7Note that there is no direct dependence on the bulk scalar solution.
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The effective gravitational equation at the brane in the first order dilaton gravity (5.3) can be
treated as a modified Einstein equation. Hence, evaluating it for the FLRW ansatz leads to modified
Friedmann equations, namely

ȧ2

a2 +
k
a2 = 2

3
ȧ
a

φ̇ − 1
12 φ̇

2 + 1
6 α
−1
1 V (φ)+ 1

3 Et
t

+ 1
16 α

−2
1

[
1
3 τ

2
t − τ

2
i − 2

3 τtτi + 2
3 τtτφ +2τiτφ − τ

2
φ

]
,

ä
a

+
ȧ2

a2 +
k
a2 =

ȧ
a

φ̇ − 1
6 φ̇

2 + 1
3 φ̈ + 1

3 α
−1
1 V (φ)

+ 1
24 α

−2
1

[
− τ

2
t −3τ

2
i +2τtτφ +6τiτφ −3τ

2
φ

]
, (6.1)

where a(t) denotes the cosmological scale factor, and k is the space curvature constant. Further-
more, the Friedmann equations (6.1) should be supplemented by the consistency condition (5.1)
evaluated for the FLRW ansatz, reading

τ̇t +3
ȧ
a

(
τt − τi

)
+ φ̇

(
τφ − τt

)
= 0 . (6.2)

The modified Friedmann equations (6.1) (with the consistency condition (6.2) taken into ac-
count) include the standard terms involving the scale factor a(t), but also a functional dependence
on the brane sources τµν and τφ (instead of the components of the energy-momentum tensor en-
tering linearly the standard Friedmann equations) and their time derivatives, as well as the direct
bulk influence encoded in Eµν . Regarding that their solution yields the evolution of the scale factor
governing the expansion of the universe, the effective cosmology at the brane will be modified with
respect to the standard picture. Therefore solving the effective Friedmann equations for the scale
factor a(t) will allow comparisons between the predictions of the first order dilaton gravity in the
brane scenario and the experimental limits given by cosmological observations, thus constituting
a step towards understanding the phenomenological implications of the string theory motivated
dilaton gravity.
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