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Light Clusters in Core-Collapse Supernovae
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Light clusters (up to A=4) in nuclear matter at subsaturation densities are treated in a quantum
statistical approach. Self-energy, Pauli-blocking, and effects of continuum correlations are taken
into account to calculate the quasiparticle properties and abundances of light elements [1]. Results
are compared with experiments from Heavy Ion Collisions [2]. Consequences for the Equation
of State [3] and nuclear structure are given [4]. The appearence of light clusters in core-collapse
supernovae at post-bounce stage may modify the neutrino emission and absorption processes and,
thereby, influence the supernova mechanism [5].
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1. Spectral Function and Nuclear Matter Equation of State

In the low-density limit, warm nuclear matter can be described as a mixture of different com-
ponents, the clusters. In equilibrium, a mass action law can be derived, and the composition is
determined by the nuclear statistical equilibrium (NSE). We consider only strong interaction, not
β equilibrium due to weak interaction. Besides the temperature T , the total number of protons np

and neutrons nn is fixed as conserved quantities. In the grand canonical ensemble, the correspond-
ing chemical potentials µn,µp are introduced. The relation to the nucleon numbers is given by the
equation of state (EOS)

nτ(T,µp,µn) =
2
Ω

∑
p

∫ dω

2π
fτ(ω)Aτ(~p,ω) (1.1)

where Ω denotes the system volume, the single nucleon states {~p,σ ,τ} are given by the mo-
mentum ~p, spin summation gives the factor 2, the isospin τ = n, p, the Fermi function reads
fτ(ω) = [exp((ω−µτ)/T )+1]−1, and Aτ(~p,ω) is the spectral function.

Using many-particle theory and cluster expansion of the self-energy [1], the result for the NSE

np(T,µp,µn) =
1
Ω

∑
A,ν ,P

Z fA,Z[EA,ν(P)] ,

nn(T,µp,µn) =
1
Ω

∑
A,ν ,P

(A−Z) fA,Z[EA,ν(P)] , (1.2)

is obtained, where

fA,Z(ω) = [exp(β (ω−Zµp− (A−Z)µn))− (−1)A]−1 (1.3)

is the Fermi or Bose distribution function which depends on the inverse temperature β = 1/(kBT )
and the chemical potentials µp,µn (instead of the isospin quantum number τ1 we use the charge
number Z). The internal quantum number ν denotes the excited states of the cluster A,Z, including
the continuum states. In addition to the free nucleons A = 1, where Z = 0 for n and Z = 1 for p, all
higher clusters are included.

The account of continuum states is of relevance for the EOS. In particular, the second virial
coefficient can be expressed in terms of the bound state energies and the scattering phase shifts
corresponding to the Beth-Uhlenbeck formula for the correlated density, see [6]

ncorr(T,µp,µn) =
1
Ω

∑
P,ν

f2(E2(P))+
1
Ω

∑
P,ν

gν

∫
∞

0

dE
π

f2(E +P2/4m)
d

dE
δν(E) . (1.4)

The internal quantum number refers to the spin and angular momentum, not relative energy. In the
low-density region where cluster formation is of relevance, a cluster Beth-Uhlenbeck formula has
been discussed recently [7].

The quasiparticle concept allows us to use similar relations similar for the EOS, but with
dispersion relations EA,ν(P) that depend also on temperature, and both chemical potentials. We
extend the quasiparticle concept that is familiar for the single nucleon states to the light nuclei using
the definition Equ

A,ν(P) = E(0)
A,ν(P)+ ReΣA,ν(P,Equ

A,ν(P)) with the A-particle self-energy ΣA,ν(P,ω).
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Approximations have to be performed to evaluate the self-energies. We will analyze this quantity
EA,ν(P;T,nB,Yp) as a function of the baryon density nB = nn + np and the proton fraction Yp =
np/nB.

For the single nucleon quasiparticle energies Equ
1 (1), different expressions are well established

such as Skyrme, relativistic mean field or microscopic Dirac-Brueckner Hartree-Fock calculations.
The few-body problem describing A nucleons in hot and dense matter can be related to an in-
medium wave equation (Bethe-Salpeter equation) which is derived from many-particle approaches,
see Ref. [1]. The A-particle wave function and the corresponding eigenvalues follow from solving
the in-medium Schrödinger equation

[Equ
1 (1)+ . . .+Equ

1 (A)−Equ
Aν

(P)]ψAνP(1 . . .A)

+ ∑
1′...A′

∑
i< j

[1− f1(i)− f1( j)]V (i j, i′ j′) ∏
k 6=i, j

δkk′ψAνP(1′ . . .A′) = 0. (1.5)

Here, the nucleon-nucleon interaction V (i j, i′ j′) becomes medium dependent due to the Pauli
blocking prefactor [1− f1(i)− f1( j)]. The phase space occupation is described by a Fermi dis-
tribution function normalized to the total density of nucleons,

f1(1) =
1

exp[Equ
1 (1)/T −µτ/T ]+1

≈ nτ

2

(
2π h̄2

mT

)3/2

e−Equ
1 (1)/T (1.6)

in the low-density, non-degenerate limit (µτ < 0). The chemical potential µτ is determined by the
normalization condition 2Ω−1

∑p f1(p) = nτ , where τ denotes isospin (neutron or proton), and has
to be expressed in terms of these densities and the temperature.

The in-medium Schrödinger equation (1.5) contains the effects of the medium in the quasi-
particle shift as well as in the Pauli blocking terms. Obviously the bound state wave functions and
energy eigenvalues as well as the scattering phase shifts become dependent on temperature and
density. We are interested in the binding energies Ebind

Aν
(P) = AEqu

1 (P/A)−Equ
Aν

(P) that indicates
the energy difference between the bound state and the continuum of free (scattering) states at the
same total momentum P. With increasing density, the binding energies become weaker. For given
temperature, at a critical density the binding energy goes to zero. Above that, ony bound states with
sufficiently large momenta can exist. An extension of the Beth-Uhlenbeck formula that includes
also the medium modifications of the bound and scattering states is discussed in [6].

2. Expressions for the Quasiparticle Shifts

We are interested in the light clusters ν = 2H, 3H, 3He, 4He. Using the empirical values for the
binding energies and the rms point radii, a Gaussian separable interaction potential

V (i j, i′ j′) = λδp1+p2,p′1+p′2
e
− (p1−p2)2

4γ2 e
− (p′1−p′2)2

4γ2 (2.1)

has been fitted and the in-medium Schrödinger equation has been solved, see Ref. [1].
The few-body Schrödinger equation has been solved within a variational approach. A Jastrow

ansatz which reproduces the exact solution for A = 2 for Gaussian separable interaction is given by

ϕ
Jastrow
ν (~p1 . . .~pA) =

1
Nν

∏
i< j

e
−

(~p j−~pi)
2

4a2
ν

(~p j−~pi)2

4b2
ν

+1
. (2.2)
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Table 1: Light cluster wave function parameters at zero density from the Jastrow approach

ν λν γν aν bν Eb rms point
[MeV fm3] [fm−1] [fm−1] [fm−1] [MeV] [fm]

d (2H) -1287.4 1.474 1.474 0.2317 -2.225 1.96
t (3Haver -1467.03 1.153 1.5947 0.5670 -8.482 1.683
h (3He)aver -1431.85 1.153 1.602 0.5514 -7.718 1.713
α (4He) -1272.9 1.231 2.151 0.912 -28.30 1.45

The prefactor Nν is determined by the normalization condition. The parameter values for the
interaction potential and the Jastrow wave functions at zero density are shown in Tab. 1. Within a
more detailed approach, different orbitals have to be considered for the protons and neutrons in the
case A = 3.

3. Binding energies at finite densities

The shift of energy eigenvalues in a dense medium is determined by different effects, the
Coulomb interaction, the self-energy shift due to the single-nucleon quasiparticle shifts, and the
Pauli blocking shift that determines the shift of the binding energies of nuclei relative to the con-
tinuum. The Pauli blocking shift results from the energy eigenvalue equation where only the Pauli
blocking terms in the potential are taken into account, δEPauli

ν (P) = EPauli
ν (P)−E0

ν(P), being a
function of the center-of-mass momentum P of the cluster, the temperature T , the nucleon density
nB and the proton fraction Yp. The Pauli blocking shift was calculated by variational approaches,
but in the low-density limit by perturbation theory.

The P dependence of the Pauli blocking shift is approximated by

∆EPauli
ν (P)≈ ∆EPauli

ν (0) exp
(
− P2

h̄2gν

)
. (3.1)

Here,

∆EPauli(0) =
n

T 3/2

aν ,1

(1+aν ,2/T )3/2 f (0)(yν)
1

1+(bν ,1 +bν ,2/T )n
, (3.2)

where f (0)(y)= 2y2
(

1−π1/2yey2
Erfc[y]

)
with limy→∞ f (0)(y)= 1−3/(2y2)±. . ., limy→0 f (0)(y)=

2y2(1−π1/2y+2y2−π1/2y3± . . .), and yν = aν ,3(1+aν ,2/T )1/2. This is exact for the two-nucleon
case. The dispersion can be calculated from

gν(T,n,Yp) =
gν ,1 +gν ,2T +hν ,1n

1+hν ,2n
(3.3)

Values for aν ,i are given below in Tab. 2, for the remaining parameters see Ref. [1].
Now, the nucleon number densities can be evaluated as in the non-interacting case, with

the only difference that the number densities of the particles are calculated with the quasipar-
ticle energies. In the light cluster-quasiparticle approximation, the total densities of neutrons
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Table 2: Pauli blocking shift parameter, low-density limit

ν aν ,1 aν ,2 aν ,3

[MeV fm3] [MeV]
d (2H) 388338 22.52 0.2223
t (3H)aver 159227 11.99 0.8539
h (3He)aver 155014 11.84 0.8351
α (4He) 553217 22.10 0.6689

nn = nfree
n + ∑ν=d,t,h,α Nνnν and of protons np = nfree

p + ∑ν=d,t,h,α Zνnν contain the densities of
the free neutrons and protons nfree

n and nfree
p , respectively, and the contributions from the nucleons

bound in the clusters with densities nν .

4. Results

From the equation of state n(T,µp,µn), thermodynamic potentials are obtained by integration,
and other thermodynamic properties can be derived in a consistent way. Results are given in [3].
The composition has been calculated for subsaturation densities, and it has been shown that bound
states disappear with increasing density due to the Pauli blocking effect. As example, the sym-
metry energy can be derived from the measured cluster yields in Heavy Ion Collisions [2] using
the quantum statistical approach to calculate light clusters in nuclear matter given here. Another
example for clustering in low-density matter are excited nuclei such as the Hoyle state [4]. Both
examples can be considered as experimental checks for the in-medium behavior of light elements.

Of particular interest is the calculation of clusters in core-collapse supernovae [5] that demands
the in-medium treatment of light clusters. The formation of correlations, in particular bound states,
is of crucial importance for different transport processes such as neutrino emission and absorption.
The quasiparticle approach and the evaluation of the in-medium shifts, see Tab. 2, are indispensable
prerequisites to investigate the abundances of light clusters in nuclear matter.
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