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Starting from a simple modification of ordinary Fermi-gas description we develop a general ap-

proach to the excluded volume approximation (EVA). This approach takes into account the arbi-

trary degree of particle degeneracy and permits the inclusion of other interactions. We introduce

the effective excluded volume function, whose form can be chosen in different ways to obtain

various models. In particular it is easy to obtain a well-known EVA which was used in the heavy

ion reactions study. By implementing our general approach to the case of Boltzmann limit we can

reproduce the results of well-designed theory of hard-sphere particles and describe the behavior

of many-component different sized mixtures. By adding to the EVA an additional long-ranged

attractive potential we have obtained quasi Van der Waals equation of state and use it to explore

thermodynamic properties and chemical composition of matter in collapsed supernova cores. The

ability of above approach to describe a phase transition to uniform nuclear matter is also consid-

ered.
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1. Introduction

Even at high densities up to the nuclear density valueρ ∼ 1014 g/cm3, the chemical composi-
tion of matter is the mixture of different nuclei. Thus one needs to account for theirs finite size (the
existence of strong repulsive nuclear interaction at short distance). The real nucleon potential can
be approximated by a hard-core repulsive part and long-ranged attractive term. This means that the
excluded volume approximation (EVA) is the most simple approach to the description of the matter
into a subnuclear domain. Every model of EVA must satisfy the following conditions: first, it must
allow the description of different-sized particles mixture. Second, it must reproduce the action of
nuclear forces in sub-nuclear domain and ensures the smooth transition from low-density region of
weak interaction to high-density strong interacting nuclear matter. And the last:it must permit the
inclusion of other interactions, for example the Coulomb one.

2. General approach

Let us assume that the particles are fermions ofM sorts in volumeV . The number of states for
the particle onn-th sort in phase-space isV Gk

n, Gk
n = gnd3pk/h3, wheregn = (2 jn+1) and indexk

numbers the cells in the momentum space. If in this cell there areNk
n particles then the statistical

weight is equal [1]:

ln△Γk
n = Gk

nV lnGk
nV −

[
Gk

nV −Nk
n

]
ln(Gk

nV −Nk
n)−Nk

n lnNk
n . (2.1)

We modify this equation in the spirit of excluded volume approximation. Namely we change
V → V (1− νn) whereνn = νn(n1,n2, ..,nM) andni is the concentration ofi-th sort of particles.
After this we define△Γn = ∏k△Γk

n and find the entropy according toS = ∑n Sn, Sn = k ln△Γn.
Next we apply the variational principle i.e. find the entropy maximum under the conditions of fixed
particle numbersNn = ∑k Nk

n and total energyE = ∑n,k εk
nNk

n :

δ (S +∑
n

αnNn +βE) = 0, αn =
µn

kT
, β = −

1
kT

. (2.2)

Hereαn andβ are the Lagrange multipliers andµn are the chemical potentials. Performing varia-
tion procedure we find:

Nk
n =

Gk
nV (1−νn)

1+exp[(εk
n − µ̃n)/kT ]

, µ̃n = µn −∑
p

(
∂νp

∂nn

)
Pid

p (T, µ̃p). (2.3)

thus we obtain the Fermi-distribution in reduced volumeV ∗ = V (1−νn) as a function of modified
chempotential̃µn, wherePid

p (T, µ̃p) stands for the ideal Fermi-gas pressure expression as a function
of T andµ. By the summation over k in the first equation(2.3) we find nn = (1−νn)nid(T, µ̃n),
which together with the second equation in(2.3) implicitly determines the composition. It must be
stressed that now equilibrium equations form the non-linear system. After solving this equations
we can find all the thermodynamic quantities: energy, pressure, etc., for example:

E = V ∑
n

(1−νn)E
id
n (T, µ̃n), P = ∑

n

[
1−νn+∑

p

(
∂νn

∂np

)
np

]
Pid

n (T, µ̃n). (2.4)
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Equilibrium equations(2.3) together with the thermodynamic ones(2.4) completely determine
the state of the system. It can be proven that the system of equations(2.3−2.4) ensures the

thermodynamical consistency (i.e fulfil the identitiesn =
(

∂P
∂ µ

)
T

etc.) for any functional form

νn = νn(n1,n2, ..,nM).

Various extra interactions can be taken into account by the free energy approachF tot = F0 +

△F , whereF0 — free energy of a system without interaction and△F is the addition caused by
interaction. Then other thermodynamic quantities will get corresponding additions, for example
△S = −

(
∂△F
∂T

)
N,V

, etc.

How does it work? A little example: let us assume that excluded volumes are the same for
all particle kinds and equal simply to the occupied volume:νn = ∑k υknk whereυk is the particle’s
own volume. Then we obtain:

P = ∑
n

Pid
n (T, µ̃n) = Pid(T,{µ̃n}), µ̃n = µn−υnPid(T,{µ̃n}), (2.5)

This is the well-known EVA-description of [2].

The results of this section can be summarize as follows: using the formulas(2.3−2.4) one
can choose some specific form of excluded volume functionνn(n1,n2, ..,nM), add extra interaction
through free energy formalism described above and obtain his own modelof EVA.

3. Hard-Sphere Liquids

For the Boltzmann particles interacting through the hard-core potential thereexist a number of
theoretical and numerical results and we’ve tried to connect our approach in this limit to the model
of hard-sphere liquids.

3.1 One-component case

In the one-component case the only parameter characterized EVA is packing numberη . In the
general caseη = π

6 ∑n σ3
n nn whereσ is the particle diameter, thusη is just the ratio of the volume,

occupied by the particles to the whole one. The main quantity characterized thesystems of hard
spheres isΓ:

Γ ≡
P

kT ∑i ni
, Γoc(η) =

1+η+η2−η3

(1−η)3 . (3.1)

The last expression for the one-component caseΓoc was derived in [3]. Then using equation(2.4)

for the pressure in Boltzmann limit we can find:

ν(η) = 1−exp

[
−

η∫

0

Γ(x)−1
x

dx

]
. (3.2)

Thus in the Boltzmann limit our approach can reproduce the results of hard-sphere liquids theory.
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3.2 Multi-component case

To obtain the results for multi-component case we postulate the demands for EVA: when the
diameter of some component tends to zero, it must be described by the formulas for an ideal gas
with µ̃n = µn but in the smaller volumeV ∗ = V (1−η). Next: in the low-density limit we must be
able to reproduce the first terms of virial expansion which can be obtainedanalytically. And last:
if the diameters of all components are equal, we must come to the one-component case(3.2).

Now we introduce a new set of functionsψn according to the identity 1−νn ≡ exp(−ψn).
Because in the low-density limitνn ≈ ψn we will try this form for ψn:

ψn =
π
6 ∑

i

niσ̂
3
niG(η ,zni), G =

g1(η)+ znig2(η)

η
, zni =

2σnσi

σn+σi

〈σ2〉

〈σ3〉
, σ̂3

ni ≡ σi(σi+σn)
2. (3.3)

Here we introduce the average values according to〈σ k〉 ≡ ∑i σ kni/∑i ni. After some mathematical
manipulations we can find:

ψn =

[
1+2σn

〈σ2〉

〈σ3〉
+σ2

n
〈σ〉

〈σ3〉

]
g1(η)+2σn

〈σ2〉

〈σ3〉

[
1+σn

〈σ2〉

〈σ3〉

]
g2(η). (3.4)

g1(η) = − ln(1−η), g2(η) =

η∫

0

[
Γoc(x)−

1+3x
1−x

]
dx
4x

, (3.5)

Now we can use this expressions and find the value ofΓ parameter for the multi-component system
in Boltzmann limit:

Γ =
1

1−η
+

〈σ〉〈σ2〉

2〈σ3〉

{[
Γoc(η)−

1
1−η

](
1+

〈σ2〉2

〈σ〉〈σ3〉

)
+

3η
1−η

(
1−

〈σ2〉2

〈σ〉〈σ3〉

)}
. (3.6)

This expression forΓ exactly coincides with the one obtained in [4].

4. The applications

We apply the formulas of the previous section to the case of supernova matterunder the con-
ditions of NSE in the subnuclear densities domain. For the diameters of particleswe accept the
following values: σn = σp = 1.6 fm for free neutrons and protons andσA,Z = 2.32 A1/3 fm for
nuclei (hereA is the nucleus mass number). On the subsequent graphs (except the phase diagram
plot) temperature is alwaysT = 5 MeV andYe = 1

3.
Figure 1 shows the chemical composition of an ideal matter (solid lines) and a matter with

the excluded volume interaction according to the hard-sphere model (dashed) as a function of
densityρ. 89Se is the most neutron-rich nucleus in our set of nuclides. On the figure 2 we plot
the calculated value of packing numberη . It is clear that excluded volume effect itself has only
a minor influence on the equilibrium concentrations even in the domain where thevalue ofη is
comparable with 1.

Figure 3 shows the behavior of pressure’s relative deviation(P−Pid)/Pid wherePid stands for
the pressure of ideal matter. Red line, marked EV corresponds to the excluded volume model.
By the blue line (marked EV+LRA) is shown the model with excluded volume correction and an
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Figure 1: Equilibrium concentrations
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Figure 2: Packing numberη
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Figure 3: Relative pressure deviation
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Figure 4: Adiabatic indexγ

additional long-ranged Yukawa-type attractive potential which was introduced to reproduce the
correct form of nucleon-nucleon interaction. Non-monotonicity of△P with the density in EV
model is caused by the equilibrium concentrations changes.

Figure 4 represents the adiabatic indexγ of matter. For an ideal matter the value ofγ is
shown by black line. Excluded volume effect always tends to stabilize the matter as it should,
but EV+LRA model predicts slightly lower values ofγ in low-density domain. This is caused by
attractive part of interaction potential. At densitiesρ ∼ 1014 both models predict the rapid growth
of γ and the matter become stiff. This is the domain where the phase transition to uniform nuclear
matter must take place. At higher densities an excluded volume models become inapplicable.

4.1 Phase transition

In this section we show how our approach can be applied to the problem of phase transition.
Of course, to obtain the quantitative results one should use a well-adjusted EOS’es in both phases.
The further calculations are only the example. For the low-density domain we use EV+LRA model,
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described above, and for the high-density region we apply the expression for uniform nuclear matter
from [5]. Figure 5 shows the phase diagram of the system for the valuesof Ye: 1

2 – black lines,
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Figure 5: Phase diagram
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Figure 6: Pressure at phase transition

1
3 with red lines and1

4 – blue. Dashed lines correspond to the boundary between the low-density
phase and the mixed phase region, solid lines — to the boundary between mixedphase and uniform
nuclear matter. This phase diagram was obtained within the Maxwell approach to the description
of phase transition.

On the figure 6 is shown the pressure-density dependence calculated using ordinary Maxwell’s
construction (black line) and quasi-Gibbs approach (red line). For the Gibbs approach pressure in
the mixed phase is not constant but the mixed phase domain is wider.

5. Conclusions

The approach to the excluded volume approximation developed here can serve as a useful
tool for exploring the properties of matter under the extreme conditions. By varying the form of
excluded volume function and choosing the appropriate additional interaction one can easily obtain
various thermodynamically consistent EOS models.

Using this EVA approach it occurs possible to reproduce (in the Boltzmann limit)the results
of well-designed theory of hard-sphere liquids. This model seems to be anadequate approximation
for the multi-component mixture of free nucleons and nuclei under the conditions of NSE — the
case of supernova matter in the sub-nuclear domain. Thus, one can not only to investigate the
thermodynamic properties of matter but also to derive the detailed information about its chemical
composition. This is a big advantage of EVA compared to the common "average nucleus" models.
The nucleosynthesis problems can be solved only via this kind of EOS’es.

Besides this, we have demonstrated that it is also possible to explore the properties of phase
transition phenomenon using this EVA. Our own supernova core-collapsecalculations utilizing the
EVA equation of state described here are underway.
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