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Starting from a simple modification of ordinary Fermi-gasatgtion we develop a general ap-
proach to the excluded volume approximation (EVA). Thisrapph takes into account the arbi-
trary degree of particle degeneracy and permits the irmusf other interactions. We introduce
the effective excluded volume function, whose form can baseh in different ways to obtain
various models. In particular it is easy to obtain a wellAkndEVA which was used in the heavy
ion reactions study. By implementing our general approache case of Boltzmann limit we can
reproduce the results of well-designed theory of hard+spparticles and describe the behavior
of many-component different sized mixtures. By adding & BVA an additional long-ranged
attractive potential we have obtained quasi Van der Waalatén of state and use it to explore
thermodynamic properties and chemical composition ofenaitcollapsed supernova cores. The
ability of above approach to describe a phase transitiomiforum nuclear matter is also consid-
ered.
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1. Introduction

Even at high densities up to the nuclear density value 1014 g/cn?, the chemical composi-
tion of matter is the mixture of different nuclei. Thus one needs to accouthidas finite size (the
existence of strong repulsive nuclear interaction at short distanbe)réal nucleon potential can
be approximated by a hard-core repulsive part and long-rangedtatreerm. This means that the
excluded volume approximation (EVA) is the most simple approach to the diésorgb the matter
into a subnuclear domain. Every model of EVA must satisfy the following itimmd: first, it must
allow the description of different-sized particles mixture. Second, it mysbdeice the action of
nuclear forces in sub-nuclear domain and ensures the smooth transitioioiv-density region of
weak interaction to high-density strong interacting nuclear matter. And thedtlasist permit the
inclusion of other interactions, for example the Coulomb one.

2. General approach

Let us assume that the particles are fermiongl@&orts in volumé/. The number of states for
the particle om-th sort in phase-spaceVeGt, G = gnd3pk/h3 whereg, = (2j,+1) and indexk
numbers the cells in the momentum space. If in this cell therélérarticles then the statistical
weight is equal [1]:

INAMK = G5V InGKv — [Gﬁv - Nrﬂ IN(GKV — N¥) — NKInNE. (2.1)

We modify this equation in the spirit of excluded volume approximation. Namely heage
V — V(1-vp) wherev, = vy(ng,n,,..,ny) andn; is the concentration atth sort of particles.
After this we defineAlN, = nkAFﬁ and find the entropy according 8= 5,5, S = KkInAl,.
Next we apply the variational principle i.e. find the entropy maximum underdhditions of fixed
particle numberl, = 3, NX and total energfg = 5, exNK:

5(S+ZanNn+ﬁE>:0> an = 7—, B:__' (22)
n
Herea, andf are the Lagrange multipliers ang are the chemical potentials. Performing varia-
tion procedure we find:
k GRV (1-vn)

— % id ~
"= T expllek— kT P %(ann>Pp (T Hp)- (2.3)

thus we obtain the Fermi-distribution in reduced volwtie=V (1—vj,) as a function of modified
chempotentiai, WhereP})d(T, Hp) stands for the ideal Fermi-gas pressure expression as a function
of T andu. By the summation over k in the first equati¢®3) we find n, = (1—vp)n'9(T, fy),
which together with the second equatior(#13) implicitly determines the composition. It must be
stressed that now equilibrium equations form the non-linear system. Afténg this equations

we can find all the thermodynamic quantities: energy, pressure, etcxdone:

E= vz 1=V EN(T, [1n), P= > |1~ vn+z( >np] PY(T, [in). (2.4)
n Np
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Equilibrium equationg2.3) together with the thermodynamic onéa4) completely determine
the state of the system. It can be proven that the system of equdfids2.4) ensures the
thermodynamical consistency (i.e fulfil the identities= (Z—E)T etc.) forany functional form
Vh = Vn(Ny, Ny, .., NYy).

Various extra interactions can be taken into account by the free engpgyachF*t = F,+
AF, whereF, — free energy of a system without interaction af\é is the addition caused by
interaction. Then other thermodynamic quantities will get correspondingi@us] for example

AS=—(92F)  etc.
2 NIV

How does it work? A little example: let us assume that excluded volumes arautie for
all particle kinds and equal simply to the occupied volume= 5, v, n, whereu, is the particle’s
own volume. Then we obtain:

P=" PY(T.fn) =PT,{fin}), Fn= pn—0nP"(T, {Fin}). (2.5)

This is the well-known EVA-description of [2].

The results of this section can be summarize as follows: using the forrfixs2.4) one
can choose some specific form of excluded volume funatign,,n,, ..,ny,), add extra interaction
through free energy formalism described above and obtain his own rabESA.

3. Hard-SphereLiquids

For the Boltzmann patrticles interacting through the hard-core potentialdkistea number of
theoretical and numerical results and we've tried to connect our agipmodhis limit to the model
of hard-sphere liquids.

3.1 One-component case

In the one-component case the only parameter characterized EVA ingacknbem. In the
general casq = ¢ 5, 02, wherea is the particle diameter, thugis just the ratio of the volume,
occupied by the particles to the whole one. The main quantity characterizegsteens of hard

spheres i$':
P _ n+n*-n®

M= Kyn Coc(n) = 1@ (3.1)

The last expression for the one-component dagevas derived in [3]. Then using equati¢24)
for the pressure in Boltzmann limit we can find:

v(n)=1- exp[—/nr(XT)_l dx]. (3.2)

0

Thus in the Boltzmann limit our approach can reproduce the results ofdpduete liquids theory.
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3.2 Multi-component case

To obtain the results for multi-component case we postulate the demandsAomBen the
diameter of some component tends to zero, it must be described by the ferfimuén ideal gas
with i, = pp but in the smaller volume* =V (1—n). Next: in the low-density limit we must be
able to reproduce the first terms of virial expansion which can be obtaimagtically. And last:
if the diameters of all components are equal, we must come to the one-corhpase(3.2).

Now we introduce a new set of functionfs, according to the identity v, = exp(—{n).
Because in the low-density limit, ~ @, we will try this form for y,:

2
wn:gzniar?iG(nvzni)a G= 91(’7)+Zni92(’7)7 Zy = 2000 {0

n on+0; (0%)

Here we introduce the average values accordingto = 3, 0*n,/ 3, n,. After some mathematical
manipulations we can find:

_ (%) | 5 {0) (a?) (0?)
Un= |1+20, < 0_3>+0n < 03>] 9,(n) +20n @) [1+an < Ggﬂ 9,(n). (3.4)
n
9,(n) =—In(1-n), gz(n)z/ {Foc(x)—%(] i—; (3.5)

0

Now we can use this expressions and find the valdepdrameter for the multi-component system
in Boltzmann limit:

e i ] ) 2 () o

This expression foF exactly coincides with the one obtained in [4].

4. The applications

We apply the formulas of the previous section to the case of supernova maderthe con-
ditions of NSE in the subnuclear densities domain. For the diameters of pantielascept the
following values: o, = op = 1.6 fm for free neutrons and protons any ; = 2.32 A3 fm for
nuclei (hereA is the nucleus mass number). On the subsequent graphs (except skead@gram
plot) temperature is alwaygs = 5 MeV andY, = %

Figure 1 shows the chemical composition of an ideal matter (solid lines) and a nvitte
the excluded volume interaction according to the hard-sphere modele@aah a function of
densityp. 89Seis the most neutron-rich nucleus in our set of nuclides. On the figure 2ate p
the calculated value of packing numbrgr It is clear that excluded volume effect itself has only
a minor influence on the equilibrium concentrations even in the domain wheraline of ) is
comparable with 1.

Figure 3 shows the behavior of pressure’s relative devidforP'¥) /P4 whereP'd stands for
the pressure of ideal matter. Red line, marked EV corresponds to thededcwlume model.

By the blue line (marked EV+LRA) is shown the model with excluded volumeeotion and an
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Figure 3: Relative pressure deviation Figure4: Adiabatic indexy

additional long-ranged Yukawa-type attractive potential which was intred to reproduce the
correct form of nucleon-nucleon interaction. Non-monotonicity/d® with the density in EV
model is caused by the equilibrium concentrations changes.

Figure 4 represents the adiabatic indexf matter. For an ideal matter the value piis
shown by black line. Excluded volume effect always tends to stabilize the maattié should,
but EV+LRA model predicts slightly lower values gfin low-density domain. This is caused by
attractive part of interaction potential. At densities- 10** both models predict the rapid growth
of y and the matter become stiff. This is the domain where the phase transition tauniiictear
matter must take place. At higher densities an excluded volume models becqmplciale.

4.1 Phasetransition

In this section we show how our approach can be applied to the probletraségransition.
Of course, to obtain the quantitative results one should use a well-adjus@@&in both phases.
The further calculations are only the example. For the low-density domais@gW+LRA model,
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described above, and for the high-density region we apply the expndesuniform nuclear matter
from [5]. Figure 5 shows the phase diagram of the system for the valués % — black lines,
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Figure5: Phase diagram Figure 6: Pressure at phase transition

% with red lines and}i — blue. Dashed lines correspond to the boundary between the low-density
phase and the mixed phase region, solid lines — to the boundary betweenghassand uniform
nuclear matter. This phase diagram was obtained within the Maxwell agptodlce description
of phase transition.

On the figure 6 is shown the pressure-density dependence calculmtgdrginary Maxwell's
construction (black line) and quasi-Gibbs approach (red line). For ihles@Gpproach pressure in
the mixed phase is not constant but the mixed phase domain is wider.

5. Conclusions

The approach to the excluded volume approximation developed here ma&nasea useful
tool for exploring the properties of matter under the extreme conditions.aBying the form of
excluded volume function and choosing the appropriate additional intemami®can easily obtain
various thermodynamically consistent EOS models.

Using this EVA approach it occurs possible to reproduce (in the Boltzmann lingt)esults
of well-designed theory of hard-sphere liquids. This model seems to dgeuate approximation
for the multi-component mixture of free nucleons and nuclei under theitomsl of NSE — the
case of supernova matter in the sub-nuclear domain. Thus, one canlypdbdnvestigate the
thermodynamic properties of matter but also to derive the detailed informatart &b chemical
composition. This is a big advantage of EVA compared to the common "avevatgus" models.
The nucleosynthesis problems can be solved only via this kind of EOS’es.

Besides this, we have demonstrated that it is also possible to explore tretjgepf phase
transition phenomenon using this EVA. Our own supernova core-coltgselations utilizing the
EVA equation of state described here are underway.
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